

Introduction

In previous class we have studied that minimum two points are required to draw a line. A line having one end point is called a ray. Now if two rays originate from a point, an angle is formed. If two lines intersect each other, different angles are formed. Here we will study different properties related to lines and angles.

Basic Terms and Definitions

Line Segment

A part of a line with two end points is called line segment and is denoted as $\overline{A B} \odot$

Ray
A part of a line with one end point is called ray and is denoted as $\overrightarrow{A B}$ e It can be extended further from point B.

Line

It can be extended from both sides (left and right) and is denoted as $\overrightarrow{A B}$ e

Collinear Points

Three or more points are said to be collinear if a single straight line passes through them. Here A, B, C are collinear.

Non-Collinear Points

Three or more points not lying on a single straight line are called non-collinear points. A, B, C are not collinear.

Angle

When two rays originates from the same end point they form an angle.

The rays are called arms of an angle and end point is called vertex.

Types of Angles

Measure	$0<x<90^{\circ}$	$x=90^{\circ}$	$90^{\circ}<x<180^{\circ}$	180°	$180^{\circ}<x<360^{\circ}$	360°
Name	Acute angle	Right angle	Obtuse angle	Straight angle	Reflex angle	Complete angle
Illustration		$\stackrel{\substack{P \\ \overbrace{}^{90^{\circ}}}}{ }$	$\xrightarrow[O]{\stackrel{R}{P}} \underset{Q_{Q}}{120^{\circ}}$	$\stackrel{\leftrightarrow}{\leftrightarrow} \xrightarrow[O]{\longrightarrow} \xrightarrow{\longrightarrow}$		$\stackrel{360^{\circ}}{Q_{0}^{2}} \overrightarrow{Q P}$

Intersecting Lines and Non-Intersecting Lines

(i) Intersecting lines

(ii) Non- intersecting lines (Parallel Lines)

In figure (i) $A B$ and $C D$ are intersecting lines.
In figure (ii) $A B$ and $C D$ are non-intersecting lines (parallel lines).
In parallel lines the lengths of the common perpendiculars at different points are equal. This equal length is called the distance between two parallel lines.

Pairs of Angles

- Complementary Angles

If the sum of measure of two angles is 90°, they are known as complementary angles.
For example: $\angle P O Q+\angle A B C=70^{\circ}+20^{\circ}=90^{\circ}$
$\therefore \angle P O Q$ and $\angle A B C$ are complementary angles and $\angle P O Q$ is called complement of $\angle A B C$ and vice-versa.

- Supplementary Angles

If the sum of measure of two angles is 180°, they are called supplementary angles.
For example : $\angle X O Y$ and $\angle P Q R$ are supplementary as $\angle X O Y+\angle P Q R=70^{\circ}+110^{\circ}=180^{\circ}$ and $\angle X O Y$ is called supplement of $\angle P Q R$ and vice-versa.

- Adjacent Angles

Two angles are said to be adjacent angles or adjacent to each other if
(i) They have common arm.
(ii) They have common vertex.
(iii) Non-common arms lying on the different sides of the common arm.

In the figure, $\angle A B C$ and $\angle C B D$ are adjacent angles.

They have common vertex B, common arm $B C$ and non-common arms $A B$ and $B D$ lying on the different sides of $B C$.

- Linear Pair

Two adjacent angles whose sum is 180° are said to form linear pair or in other words, supplementary adjacent angles are called linear pair.
Here, $\angle B O C+\angle C O A=180^{\circ}$, so they form linear pair.

Linear Pair Axiom

Axiom-1

If a ray stands on a line, then the sum of two adjacent angles so formed is 180°.
Ray $O P$ stands on line $A B$, then $\angle A O P$ and $\angle P O B$ are adjacent angles.
$\Rightarrow \quad \angle A O P+\angle P O B=180^{\circ}$

Axiom-2

If the sum of two adjacent angles is 180°, then the non-common arms of the angles form a straight line. Suppose $\angle A O B$ and $\angle B O C$ are two adjacent angles, with common arm $O B$, non common arms $O A$ and $O C$.
If $\angle A O B+\angle B O C=180^{\circ}$, then $A O C$ would be a straight line.

Vertically Opposite Angles

If two lines $A B$ and $C D$ intersects each other at point O, then four angles are formed.

$\angle A O D$ is vertically opposite to $\angle B O C$. Similarly $\angle A O C$ is vertically opposite to $\angle D O B$. These are called pairs of vertically opposite angles.

Theorem 1

Statement : If two lines intersect each other, then the vertically opposite angles are equal.
Given : $A B$ and $C D$ are two lines intersecting each other at point $O . \angle A O C$ is vertically opposite to $\angle D O B$ and $\angle A O D$ is vertically opposite to $\angle C O B$.
To Prove : $\angle A O C=\angle D O B$

$$
\angle A O D=\angle C O B
$$

Proof : $\angle A O C+\angle A O D=180^{\circ}$

$$
\begin{equation*}
\angle A O D+\angle D O B=180^{\circ} \tag{1}
\end{equation*}
$$

[Linear pair]
[Linear pair]

From (1) and (2), we get

$$
\angle A O C+\angle A O D=\angle A O D+\angle D O B
$$

$\Rightarrow \quad \angle A O C=\angle D O B$
Similarly, $\quad \angle A O D=\angle C O B$

1. $A C B$ is a line such that $\angle D C A=5 x$ and $\angle D C B=4 x$. Find the value of x and hence find $\angle D C A$ and $\angle D C B$.

Soln.: Since $A C B$ is a line,

$$
\begin{array}{ll}
\therefore & \angle A C D \text { and } \angle D C B \text { form a linear pair } \\
\Rightarrow & \angle A C D+\angle D C B=180^{\circ} \Rightarrow 5 x+4 x=180^{\circ} \\
& 9 x=180^{\circ} \Rightarrow x=20^{\circ} \\
\therefore & \angle A C D=5 x=5 \times 20^{\circ}=100^{\circ} \\
& \angle D C B=4 x=4 \times 20^{\circ}=80^{\circ}
\end{array}
$$

2. If the supplement of an angle is two-third of itself. Determine the angle and its supplement.
Soln.: \quad Let the angle be x
$\therefore \quad$ Its supplement $=\frac{2}{3}$ of $x=\frac{2}{3} x$
$\Rightarrow \quad x+\frac{2}{3} x=180^{\circ} \Rightarrow \quad \frac{3 x+2 x}{3}=180^{\circ}$
$\Rightarrow \frac{5 x}{3}=180^{\circ} \Rightarrow x=\frac{180^{\circ} \times 3}{5}=108^{\circ}$
$\therefore \quad$ The angle is 108°
and its supplement $=\frac{2}{3} \times 108^{\circ}=2 \times 36^{\circ}=72^{\circ}$
3. Lines $A B, C D$ and $E F$ intersect at O. Find the measures of $\angle A O C, \angle C O F$ and $\angle B O F$

Soln.: $A B$ and $E F$ intersect at point O.
$\therefore \quad \angle A O E=\angle F O B$ [Vertically opposite angles]
$\therefore \quad \angle F O B=40^{\circ}$
Similarly, $\angle A O C=\angle D O B$
[Vertically opposite angles]
$\Rightarrow \quad \angle A O C=35^{\circ}$
Also, $\angle A O E+\angle A O C+\angle C O F=180^{\circ}$
[Straight angle]
$\angle C O F=180^{\circ}-75^{\circ}=105^{\circ}$
4 Lines l_{1} and l_{2} intersects at point O forming angles a, b, c, d.

If $a=45^{\circ}$, find $b, c, d, a+b, b+c$ and verify that $a+d=b+c$.
Soln.: $a=45^{\circ} \Rightarrow c=45^{\circ}$
[Vertically opposite angles]

$$
\begin{aligned}
& a+d=180^{\circ} \\
\Rightarrow \quad & d=180^{\circ}-a=180^{\circ}-45^{\circ}=135^{\circ} \\
& d=b \quad[\text { Vertically op } \\
\Rightarrow \quad & b=135^{\circ} \\
\text { Now, } & a+d=45^{\circ}+135^{\circ}=180^{\circ} \\
& b+c=135^{\circ}+45^{\circ}=180^{\circ} \\
\Rightarrow \quad & a+d=b+c
\end{aligned}
$$

[Linear pair]
[Vertically opposite angles]

Transversal

A line which intersects two or more lines at distinct points is called a transversal.

(q is a transversal of l and m)

(q is not a transversal of l and m)

Angles Formed by a Transversal

Suppose l and m are two parallel lines intersected by a transversal n.

Interior Angles

$\angle 1, \angle 4, \angle 5, \angle 6$

Exterior Angles

$\angle 3, \angle 2, \angle 7, \angle 8$
Corresponding Angles : $\angle 1$ and $\angle 8, \angle 2$ and $\angle 6, \angle 3$ and $\angle 5, \angle 4$ and $\angle 7$
[Note that pairs of angles lie either above or below the lines.]
Alternate Interior Angles : $\angle 4$ and $\angle 6, \angle 1$ and $\angle 5$

Alternate Exterior Angles : $\angle 3$ and $\angle 8, \angle 2$ and $\angle 7$
Co-Interior Angles : (Also called consecutive interior angles or allied angles) $\angle 4$ and $\angle 5, \angle 1$ and $\angle 6$.
Co-Exterior Angles : $\angle 2$ and $\angle 8, \angle 3$ and $\angle 7$.

Results when a Transveral Intersects Two Parallel lines

Corresponding Angles Axiom

(i) If a transversal intersects two parallel lines, then each pair of corresponding angles are equal.
(ii) If a transversal intersects two lines such that a pair of corresponding angles are equal, then the two lines are parallel to each other.

Alternate Interior Angles Theorem

(i) If a transversal intersects two parallel lines, then each pair of alternate interior angles are equal.
(ii) If a transversal intersects two lines such that a pair of alternate interior angles are equal, then the two lines are parallel.

Co-interior Angles Theorem

(i) If a transversal intersects two parallel lines, then each pair of interior angles on the same side of the transversal is supplementary. In other words, co-interior angles are supplementary.
(ii) If a transversal intersects two lines such that a pair of co-interior angles are supplementary, then the two lines are parallel.

Co-exterior Angles Theorem

(i) If a transversal intersects two parallel lines then each pair of co-exterior angles are supplementary.
(ii) If a transversal intersects two lines such that a pair of co-exterior angles are supplementary, then two lines are parallel.

Parallel Lines Theorem

Lines which are parallel to the same line are parallel to each other.

This means if $l \| n$ and $m\|n \Rightarrow l\| m$.
5. In the given figure if $l \| m$ and t is a transversal, determine x.

Soln.: $\quad l \| m$
$\Rightarrow 2 x+16^{\circ}+100^{\circ}=180^{\circ} \quad$ [Co-exterior angles]
$\Rightarrow \quad 2 x=180^{\circ}-116^{\circ} \Rightarrow 2 x=64^{\circ} \Rightarrow x=32^{\circ}$
6. $A B \| C D$ and $E F \| D Q$. Determine $\angle P D Q$, $\angle A E D$ and $\angle D E F$.

Soln.: $A B \| C D$ and transveral $D E$ intersects them at E and D respectively.
$\therefore \quad \angle A E D=\angle C D P$
[Corresponding angles]
$\Rightarrow \quad \angle A E D=34^{\circ}$
Now ray $E F$ stands on $A B$ at E

$$
\begin{array}{lc}
\therefore & \angle A E F+\angle B E F=180^{\circ} \\
\Rightarrow & \angle A E P+\angle P E F+\angle B E F=180^{\circ} \\
& {[\angle A E F=\angle A E P+\angle P E F]} \\
\Rightarrow & 34^{\circ}+\angle P E F+78^{\circ}=180^{\circ} \\
\Rightarrow & \angle P E F=180^{\circ}-112^{\circ} \\
\Rightarrow & \angle P E F=68^{\circ}
\end{array} \quad[\text { From (i)] }
$$

Now $E F \| D Q$ and transversal $D E$ intersects them at E and D respectively.
$\therefore \quad \angle F E D=\angle P D Q \quad$ [Corresponding angles]
$\Rightarrow \quad \angle P D Q=68^{\circ} \quad$ [From (ii)]
So, $\angle P D Q=\angle D E F=68^{\circ}$ and $\angle A E D=34^{\circ}$
7. If $l\|m\| n$ and $P Q \| R S$, find $\angle Q R S$.

Soln.: Extend $Q P$ to point A and $S R$ to point B. $l \| m \Rightarrow \angle 1=25^{\circ} \quad$ [Alternate interior angles] and $\angle 2=70^{\circ} \quad$ [Corresponding angles]
Also, $\angle 3=\angle 2 \quad[A P| | S B$, corresponding angles]
$\Rightarrow \quad \angle 3=70^{\circ}$
Now, $\angle 3+\angle 4=180^{\circ} \quad$ [Linear pair]
$\Rightarrow 70^{\circ}+\angle 4=180^{\circ} \Rightarrow \angle 4=110^{\circ}$
$\therefore \quad \angle Q R S=\angle 1+\angle 4=25^{\circ}+110^{\circ}=135^{\circ}$
, 8 In figure, if $A B \| C D, \angle B E G=65^{\circ}$ and $\angle E F C=80^{\circ}$, then find x and y.

Soln.: $\angle B E F=\angle E F C$ [Alternate interior angles]
$\Rightarrow 65^{\circ}+x=80^{\circ}$
$\Rightarrow x=80^{\circ}-65^{\circ} \Rightarrow x=15^{\circ}$
Now, $\angle F G E=\angle B E G$ [Alternate interior angles]
$\Rightarrow \quad y=65^{\circ}$.

Properties of Triangles

- Angle Sum Property of a Triangle

Theorem 2

Statement : The sum of the three angles of a triangle is 180°.
i.e., $\angle 1+\angle 2+\angle 3=180^{\circ}$

Proof : Draw a line $X Y$ through point A parallel to $B C$.
$\angle 3=\angle 4$
[Alternate interior angles]
$\angle 5=\angle 2 \quad$ [Alternate interior angles]
Also $\angle 5+\angle 1+\angle 4=180^{\circ} \quad$ [Straight angle]
Replacing $\angle 5$ and $\angle 4$ by $\angle 2$ and $\angle 3$ respectively, we get

$\angle 2+\angle 1+\angle 3=180^{\circ}$
$\Rightarrow \quad \angle 1+\angle 2+\angle 3=180^{\circ}$
\therefore Sum of all angles of a triangle is 180°.

- Exterior Angle Property of a Triangle

Theorem 3

Statement : If a side of a triangle is produced, then the exterior angle so formed is equal to the sum of the two interior opposite angles.
Given : In $\triangle A B C$, side $B C$ is extended to point $D . \angle A C D$ is an exterior angle.

To Prove : $\angle A C D=\angle C A B+\angle A B C$
Proof : $\angle A B C+\angle C A B+\angle B C A=180^{\circ}$
...(1) [Angle sum property of triangle]
Also, $\angle B C A+\angle A C D=180^{\circ}$

From (1) and (2), we get
$\Rightarrow \quad \angle A B C+\angle C A B+\angle B C A=\angle B C A+\angle A C D$
$\Rightarrow \quad \angle A C D=\angle A B C+\angle C A B$
9. If one angle of a triangle is 72° and the difference of the other two angles is 12°, find the other two angles.
Soln.: One angle of the triangle $=72^{\circ}$
Let other two angles be x and $12^{\circ}+x$
[\because The difference between the two angles is 12°]
So, $x+12^{\circ}+x+72^{\circ}=180^{\circ}$
[Angle sum property of triangle]
$\Rightarrow \quad 2 x+84^{\circ}=180^{\circ}$
$\Rightarrow \quad 2 x=180^{\circ}-84^{\circ}=96^{\circ}$
$\Rightarrow x=\frac{96^{\circ}}{2}=48^{\circ}$
$\therefore \quad$ The other angles are 48° and $48^{\circ}+12^{\circ}=60^{\circ}$

$$
\begin{aligned}
& \left.\angle 1+\angle C B D=180^{\circ} \quad \text { [Linear pair }\right] \\
& \angle 1=180^{\circ}-107^{\circ}=73^{\circ}
\end{aligned}
$$

Since, $\angle 1=73^{\circ}$ and $\angle A=73^{\circ}$
So, $\quad \angle 1=\angle A$
$\Rightarrow \quad l \| m$ [As corresponding angles are equal] From exterior angle property of triangle,
11 The sides $B C, C A$ and $A B$ of $\triangle A B C$, are produced

$$
\begin{align*}
& \angle F B C=\angle 1+\angle 3 \tag{i}\\
& \angle B A E=\angle 2+\angle 3 \\
& \angle A C D=\angle 1+\angle 2
\end{align*}
$$

in order, forming exterior angles $\angle A C D, \angle B A E$ and $\angle C B F$. Prove that
$\angle A C D+\angle B A E+\angle C B F=360^{\circ}$.
Soln.:

Adding (i), (ii) and (iii), we get
$\angle F B C+\angle B A E+\angle A C D$
$=\angle 1+\angle 3+\angle 2+\angle 3+\angle 1+\angle 2$
$=2(\angle 1+\angle 2+\angle 3)=2 \times 180^{\circ}$
[By angle sum property of triangle]
$\Rightarrow \quad \angle F B C+\angle B A E+\angle A C D=360^{\circ}$

ESSENTIAL POINTS for COMPETITIVE EXAMS

Angle

An angle is formed when two rays originate from the same point.

Some Angle Relations

- Adjacent Angles

Two angles are called adjacent angles, if
(i) they have same vertex
(ii) they have common arm
(iii) uncommon arms are on different sides of the common arm

- Linear Pair of Anlges

Two adjacent angles are said to form a linear pair of angles, if
(i) their non-common arms are two opposite rays
(ii) the sum of the adjacent angles so formed is 180°
(iii) they are supplementary.

- Vertically Opposite Angles

If two lines $A B$ and $C D$ intersects each other at point O, then $\angle A O D$ is vertically opposite to $\angle B O C$.
Similarly $\angle A O C$ is vertically opposite to $\angle D O B$.

- Transversal

A line which intersects two or more given lines at distinct points, is called a transversal of the given lines.

- The measures of vertical opposite angles are equal.
- The measures of angles forming a linear pair has total 180°.
- Angle Relationships Formed by Parallel Lines being cut by a Transversal .
(i) The measures of alternate exterior angles are equal.
(ii) The measures of alternate interior angles are equal.
(iii) The measures of the same-side interior angles are supplementary (sum to 180°)
(iv) The measures of corresponding angles are equal
- Lines which are parallel to a given line are parallel to each other.
- Sum of three angles of a triangle is 180°.
- If a side of a triangle is produced, the exterior angle so formed is equal to the sum of the two interior opposite angles.

SOLVED EXAMPLES

1. Prove that the sum of all angles formed on the same side of a line at a given point on the line is 180°.
Soln.: Given : $A O B$ is a straight line and rays $O C$, $O D$ and $O E$ stands on it, forming $\angle A O C, \angle C O D$, $\angle D O E$ and $\angle E O B$.

To Prove :

$\angle A O C+\angle C O D+\angle D O E+\angle E O B=180^{\circ}$.
Proof : Ray $O C$ stands on line $A B$.
$\therefore \angle A O C+\angle C O B=180^{\circ} \quad$ [Linear pair]
$\Rightarrow \quad \angle A O C+(\angle C O D+\angle D O E+\angle E O B)=180^{\circ}$
$\Rightarrow \quad \angle A O C+\angle C O D+\angle D O E+\angle E O B=180^{\circ}$.
Hence, the sum of all the angles formed on the same side of line $A B$ at a point O on it is 180°.
2. Prove that the bisectors of the angles of a linear pair are at right angle.
Soln.: Given : $\angle A O C$ and $\angle B O C$ form a linear pair of angles. $O D$ and $O E$ are the bisectors of $\angle A O C$ and $\angle B O C$ respectively.

To Prove: $\angle D O E=90^{\circ}$.
Proof : $\angle A O C+\angle B O C=180^{\circ} \quad$ [Linear pair]
$\Rightarrow \frac{1}{2} \angle A O C+\frac{1}{2} \angle B O C=90^{\circ}$
$\Rightarrow \quad \angle D O C+\angle C O E=90^{\circ}$
$[\because O D$ and $O E$ are the bisectors of $\angle A O C$ and $\angle B O C]$
$\Rightarrow \quad \angle D O E=90^{\circ}$.
Hence, the bisectors of the angles of a linear pair are at right angle.
3. Prove that the bisectors of a pair of vertically opposite angles are in the same straight line.
Soln.: Given : Two lines $A B$ and $C D$ intersecting each other at a point O. Also, $O E$ and $O F$ are the bisectors of $\angle A O C$ and $\angle B O D$ respectively.

To Prove : $E O F$ is a straight line.
Proof : Since, the sum of all angles around a point is 360°,
$\therefore \angle A O C+\angle B O C+\angle B O D+\angle A O D=360^{\circ}$
$\Rightarrow 2 \angle E O C+2 \angle B O C+2 \angle B O F=360^{\circ}$
$[\because \angle B O C=\angle A O D$ (Vertically opposite angles). $O E$
is bisector of $\angle A O C, O F$ is bisector $\angle B O D$]
$\Rightarrow \angle E O C+\angle B O C+\angle B O F=180^{\circ}$
$\Rightarrow \quad \angle E O F=180^{\circ}$
Hence, $E O F$ is a straight line.
4. In the figure, lines $A B$ and $C D$ intersect at O. If $\angle A O C+\angle B O E=80^{\circ}$ and $\angle B O D=30^{\circ}$, find $\angle B O E$ and reflex $\angle A O D$.

Soln.: $\angle A O C+\angle B O E=80^{\circ}$
...(i) [Given]
$\angle B O D=30^{\circ}$
...(ii) [Given]
Lines $A B$ and $C D$ intersect at O.
$\therefore \angle A O C=\angle B O D$
[Vertically opposite angles]
$\Rightarrow \quad \angle A O C=30^{\circ}$
[From (ii)]
Now, putting the value of $\angle A O C$ in (i),
we have
$30^{\circ}+\angle B O E=80^{\circ}$
$\Rightarrow \quad \angle B O E=80^{\circ}-30^{\circ}=50^{\circ}$.
Also, $\angle B O D+\angle A O D=180^{\circ} \quad$ [Linear pair]
$\angle A O D=180^{\circ}-30^{\circ}=150^{\circ}$
and reflex $\angle A O D=360^{\circ}-150^{\circ}=210^{\circ}$.
5. In the figure, lines $X Y$ and $M N$ intersect at O. If $\angle P O Y=90^{\circ}$ and $a=b$, find c.

Soln.: Given $a=b$
Let $a=x$ then $b=x$
$\angle X O M+\angle P O M+\angle P O Y=180^{\circ}$
[Linear pair]

$$
\begin{aligned}
& \Rightarrow \quad x+x+90^{\circ}=180^{\circ} \\
& \Rightarrow \quad 2 x+90^{\circ}=180^{\circ} \Rightarrow 2 x=90^{\circ} \\
& \Rightarrow \quad x=\frac{90^{\circ}}{2}=45^{\circ} \\
& \therefore \quad \quad \angle X O M=b=45^{\circ} \\
& \text { and } \quad \angle P O M=a=45^{\circ} \\
& \text { Now, } \quad \angle X O N=c=\angle M O Y
\end{aligned}
$$

[Vertically opposite angles]

$$
=\angle P O M+\angle P O Y=45^{\circ}+90^{\circ}
$$

Hence, $c=135^{\circ}$.
6. In the figure, if $A B\|C D, C D\| E F$ and $y: z=2: 3$, find x.

Soln.: Let $y=2 a$ and $z=3 a$

$$
\angle D H I+\angle F I H=180^{\circ}[C D \| E F, \text { Co-interior }
$$

angles]

$$
\Rightarrow \quad y+z=180^{\circ}
$$

$$
\Rightarrow \quad 2 a+3 a=180^{\circ}
$$

$$
\Rightarrow \quad 5 a=180^{\circ}
$$

$$
\Rightarrow \quad a=\frac{180^{\circ}}{5}=36^{\circ}
$$

$\therefore \quad y=2 a=2 \times 36^{\circ}=72^{\circ}$ and $z=3 a=3 \times 36^{\circ}=108^{\circ}$
Also, $A B \| C D$ and $G I$ is a transversal
$\therefore \angle B G I=\angle D H I \quad$ [Corresponding angles]
$\Rightarrow x=y \quad \Rightarrow \quad x=72^{\circ}$
7. If $A B \| D E$, then find the value of x.

Soln.: Construct a line l through C parallel to $A B$.

$\Rightarrow \quad l\|A B\| D E$ and $x=\angle 1+\angle 2$
Since, $A B \| l$
$\Rightarrow \quad \angle 1=120^{\circ} \quad$ [Alternate interior angles]
Also, $\quad l \| D E$
$\Rightarrow \quad \angle 2=110^{\circ} \quad$ [Alternate interior angles]
Now, $x=\angle 1+\angle 2$
$\Rightarrow x=120^{\circ}+110^{\circ}=230^{\circ}$
8. The side $B C$ of a $\triangle A B C$ is produced such that D is on ray $B C$. The bisector of $\angle A$ meets $B C$ in L as in figure. Prove that
$\angle A B C+\angle A C D=2 \angle A L C$.

Soln.: In $\triangle A B C$, we have

$$
\angle A C D=\angle B+\angle A
$$

[Exterior angle property of a triangle]
$\Rightarrow \quad \angle A C D=\angle B+2 \angle 1$
[$\because A L$ is the bisector of $\angle A \therefore \angle A=2 \angle 1]$
In $\triangle A B L$, we have

$$
\angle A L C=\angle B+\angle B A L
$$

[Exterior anlge property of a triangle]
$\Rightarrow \quad \angle A L C=\angle B+\angle 1$
$\Rightarrow \quad 2 \angle A L C=2 \angle B+2 \angle 1$
Subtracting (i) from (ii), we get
$2 \angle A L C-\angle A C D=\angle B$
$\Rightarrow \quad \angle A C D+\angle B=2 \angle A L C$
$\Rightarrow \quad \angle A C D+\angle A B C=2 \angle A L C$.
9. $A E$ bisects $\angle C A D$ and $\angle B=\angle C$, prove that $A E \| B C$.

Soln.: In $\triangle A B C$, we have
$\angle C A D=\angle B+\angle C$
[Exterior angle property of a triangle]
$\Rightarrow \quad \angle C A D=2 \angle C \quad$ [Given $\angle B=\angle C$]
$\Rightarrow \quad 2 \angle C A E=2 \angle C \quad[\because \quad \angle C A D$ is bisected by $A E]$
$\Rightarrow \quad \angle C A E=\angle C$
$\Rightarrow \quad \angle C A E=\angle A C B$
$\Rightarrow \quad A E \| B C$
[As alternate interior angles are equal]
10. In figure, lines $P Q$ and $R S$ intersect each other at point O, ray $O A$ and ray $O B$ bisect $\angle P O R$ and $\angle P O S$ respectively. If $\angle P O A: \angle P O B=2: 7$, then find $\angle S O Q$ and $\angle B O Q$.

Soln.: $\angle P O R+\angle P O S=180^{\circ}$
[Linear pair]
We are given that, ray $O A$ and ray $O B$ bisect $\angle P O R$ and $\angle P O S$ respectively.
Therefore,
$\angle P O A=\frac{1}{2} \angle P O R$ and $\angle P O B=\frac{1}{2} \angle P O S$.
$\Rightarrow \angle P O A+\angle P O B=\frac{1}{2}(\angle P O R+\angle P O S)$

$$
=\frac{1}{2} \times 180^{\circ}=90^{\circ}
$$

Now, if $\angle P O A: \angle P O B=2: 7$, then, we have
$\angle P O A=\frac{2}{9} \times 90^{\circ}=20^{\circ}$ and
$\angle P O B=\frac{7}{9} \times 90^{\circ}=70^{\circ}$.
$\angle P O R=2 \times \angle P O A=2 \times 20^{\circ}=40^{\circ}$
$\angle S O Q=\angle P O R \quad$ [Vertically opposite angles]
$\therefore \angle S O Q=40^{\circ}$

$$
\angle B O Q=\angle B O S+\angle S O Q=\angle P O B+\angle S O Q
$$

$$
\left[\angle B O S=\angle P O B=\frac{1}{2} \angle P O S\right]
$$

$$
=70^{\circ}+40^{\circ}=110^{\circ}
$$

$\therefore \angle B O Q=110^{\circ}$.
11. Ray $O E$ bisects $\angle A O B$ and $O F$ is the ray opposite $O E$. Show that $\angle 3=\angle 4$

Soln.: Ray $O E$ and $O F$ are opposite. So, FOF is a straight line.
$\therefore \angle 3+\angle 1=180^{\circ}$ (Linear pair)
and $\angle 4+\angle 2=180^{\circ}$ (Linear pair)
From (i) and (ii), we have

$$
\begin{aligned}
& \angle 3+\angle 1=\angle 4+\angle 2 \\
\Rightarrow \quad & \angle 3+\angle 1=\angle 4+\angle 1 \\
\Rightarrow \quad & \angle 3=\angle 4
\end{aligned}
$$

12. In the figure, line l and m intersect at O, forming angles as shown in the figure.

(i) If $x=45^{\circ}$, what is z ?
(ii) If $v=125^{\circ}$, what is y ?

Soln.: (i) $z=x=45^{\circ} \quad$ (Vertically opposite angles)
(ii) $y=v=125^{\circ}$ (Vertically opposite angles)
13. In the given figure, $A B \| C D$ and $E F \| G H$.

Find the values of x, y, z and t.

Soln.: $E F \| G H$ and $R Q$ is a transversal

$$
\Rightarrow \quad y=50^{\circ} \quad \text { (Corresponding angles) }
$$

$\because E F$ and $R Q$ interesect at R.
$\Rightarrow \quad x=50^{\circ} \quad$ (Vertically opposite angles)
Now, $E F \| G H$ and $P Q$ is a transversal
$\Rightarrow 100^{\circ}+z=180^{\circ} \quad$ (Co-exterior angles)
$\Rightarrow z=180^{\circ}-100^{\circ}$
$\Rightarrow \quad z=80^{\circ}$
$\because A B \| C D$ and $Q S$ is a transversal
$\Rightarrow t=z \quad$ (Alternate interior angles)
$\Rightarrow t=80^{\circ}$
14. In the figure, $A B \| D C$. If $x=\frac{4}{3} y$ and $y=\frac{3}{8} z$ find the values of x, y and z.

Soln.: $A B \| D C$ and $B C$ is a transversal

$$
\begin{aligned}
& \Rightarrow \quad(x+y)+z=180^{\circ} \quad \text { (co-interior angles) } \\
& \Rightarrow \quad \frac{4}{3}+\frac{8}{3}=180^{\circ} \\
& \qquad\left(\because x=\frac{4}{3} y \text { and } y=\frac{3}{8} z \Rightarrow z=\frac{8}{3} y\right) \\
& \Rightarrow \quad \frac{15}{3}=180^{\circ} \Rightarrow=\frac{180^{\circ} \times 3}{15} \\
& \Rightarrow \quad y=36^{\circ} \\
& \text { Now, } x=\frac{4}{3} y
\end{aligned}
$$

and, $z=\frac{8}{3} y$

$$
\Rightarrow \quad=\frac{8}{3} \times 36^{\circ} \Rightarrow z=96^{\circ}
$$

15. In the figure, prove that $T P \| Q U$.

Soln.: In $\triangle Q R S$
$\angle 2=48^{\circ}+37^{\circ}$ (Exterior angle property of a triangle)
$\Rightarrow \quad \angle 2=85^{\circ}$
$\Rightarrow \quad \angle U Q R=85^{\circ}$
So, $\angle T P R=\angle U Q R$
$\Rightarrow \quad T P \| U Q$
(As corresponding angles are equal)

NCERT SECTION

Exercise 6.1

1. In the given figure, lines $A B$ and $C D$ intersect at O. If $\angle A O C+\angle B O E=70^{\circ}$ and $\angle B O D=40^{\circ}$, find $\angle B O E$ and reflex $\angle C O E$.

Soln.: Since $A B$ is a straight line,
$\therefore \quad \angle A O C+\angle C O E+\angle E O B=180^{\circ}$
or $(\angle A O C+\angle B O E)+\angle C O E=180^{\circ}$
or $70^{\circ}+\angle C O E=180^{\circ}$
$\left[\because \angle A O C+\angle B O E=70^{\circ}\right.$ (Given) $]$
or $\angle C O E=180^{\circ}-70^{\circ}=110^{\circ}$
\therefore Reflex $\angle C O E=360^{\circ}-110^{\circ}=250^{\circ}$
Also, $A B$ and $C D$ intersect at O.
$\therefore \quad \angle C O A=\angle B O D$
[Vertically opposite angles]
But $\angle B O D=40^{\circ}$
[Given]
$\therefore \quad \angle C O A=40^{\circ}$
Also, $\angle A O C+\angle B O E=70^{\circ}$
$\therefore \quad 40^{\circ}+\angle B O E=70^{\circ}$
or $\angle B O E=70^{\circ}-40^{\circ}=30^{\circ}$
Thus, $\angle B O E=30^{\circ}$ and reflex $\angle C O E=250^{\circ}$.
2. In the given figure, lines $X Y$ and $M N$ intersect at O. If $\angle P O Y=90^{\circ}$ and $a: b=2: 3$, find c.

Soln.: Since XOY is a straight line.
$\therefore \quad \angle b+\angle a+\angle P O Y=180^{\circ}$
But $\angle P O Y=90^{\circ}$ [Given]
$\therefore \quad \angle b+\angle a=180^{\circ}-90^{\circ}=90^{\circ}$
Also $a: b=2: 3$
$a=\left[\frac{90^{\circ}}{2+3}\right] \times 2=\frac{90^{\circ}}{5} \times 2=36^{\circ}$
$b=\frac{90^{\circ}}{5} \times 3=54^{\circ}$
Since $X Y$ and $M N$ intersect at O,
$\therefore c=[a+\angle P O Y]$
[Vertically opposite angles]
or $c=36^{\circ}+90^{\circ}=126^{\circ}$
Thus, the required measure of $c=126^{\circ}$.
3. In the given figure, $\angle P Q R=\angle P R Q$, then prove that $\angle P Q S=\angle P R T$.

Soln.: $S T$ is a straight line,
$\therefore \angle P Q R+\angle P Q S=180^{\circ}$
[Linear pair]
Similarly, $\angle P R T+\angle P R Q=180^{\circ}$
[Linear Pair]
From (1) and (2), we have

$$
\angle P Q S+\angle P Q R=\angle P R T+\angle P R Q
$$

But $\angle P Q R=\angle P R Q$
[Given]
$\therefore \angle P Q S=\angle P R T$
4. In the given figure, if $x+y=w+z$, then prove that $A O B$ is a line.

Soln.: Sum of all the angles at a point $=360^{\circ}$
$\therefore x+y+z+w=360^{\circ}$
or, $(x+y)+(z+w)=360^{\circ}$
But $(x+y)=(z+w)$
[Given]
$\therefore(x+y)+(x+y)=360^{\circ}$
or, $2(x+y)=360^{\circ}$
or, $(x+y)=\frac{360^{\circ}}{2}=180^{\circ}$
$\therefore A O B$ is a straight line.
5. In the given figure, $P O Q$ is a line. Ray $O R$ is perpendicular to line $P Q$. $O S$ is another ray lying between rays $O P$ and $O R$. Prove that $\angle R O S=\frac{1}{2}(\angle Q O S-\angle P O S)$.

Soln.: $P O Q$ is a straight line.
[Given]
$\therefore \angle P O S+\angle R O S+\angle R O Q=180^{\circ}$
But $O R \perp P Q \quad \therefore \angle R O Q=90^{\circ}$
$\Rightarrow \quad \angle P O S+\angle R O S+90^{\circ}=180^{\circ}$
$\Rightarrow \quad \angle P O S+\angle R O S=90^{\circ}$
$\Rightarrow \quad \angle R O S=90^{\circ}-\angle P O S$
Now, we have $\angle R O S+\angle R O Q=\angle Q O S$
$\Rightarrow \quad \angle R O S+90^{\circ}=\angle Q O S$
$\Rightarrow \quad \angle R O S=\angle Q O S-90^{\circ}$
Adding (1) and (2), we have
$\Rightarrow \quad 2 \angle R O S=(\angle Q O S-\angle P O S)$
$\therefore \angle R O S=\frac{1}{2}(\angle Q O S-\angle P O S)$.
6. It is given that $\angle X Y Z=64^{\circ}$ and $X Y$ is produced to point P. Draw a figure from the given information. If ray $Y Q$ bisects $\angle Z Y P$, find $\angle X Y Q$ and reflex $\angle Q Y P$.
Soln.: $X Y P$ is a straight line.

Since $\angle X Y Q=\angle X Y Z+\angle Z Y Q$
$\Rightarrow \quad \angle X Y Q=64^{\circ}+\angle Q Y P$
$\left[\because \angle X Y Z=64^{\circ}\right.$ (Given) and $\left.\angle Z Y Q=\angle Q Y P\right]$
$\Rightarrow \angle X Y Q=64^{\circ}+58^{\circ}=122^{\circ}\left[\angle Q Y P=58^{\circ}\right]$
Thus,
$\angle X Y Q=122^{\circ}$ and reflex $\angle Q Y P=302^{\circ}$.

Exercise 6.2

1. In the given figure, find the values of x and y and then show that $A B \| C D$.

Soln.: In the figure, we have $C D$ and $P Q$ intersect at F.
$\therefore y=130^{\circ}$
[Vertically opposite angles]
Again, $P Q$ is a straight line and $E A$ stands on it.
$\therefore \angle A E P+\angle A E Q=180^{\circ} \quad$ [Linear pair]
or $50^{\circ}+x=180^{\circ}$
$\Rightarrow \quad x=180^{\circ}-50^{\circ}=130^{\circ}$
From (1) and (2), $x=y$
As they are pair of alternate interior angles.
$\therefore A B \| C D$
2. In the given figure, if $A B\|C D, C D\| E F$ and $y: z=3: 7$, find x.

Soln.: $A B \| C D$ and $E F \| C D$
[Given]
$\therefore A B \| E F$ and $P Q$ is a transversal.
$\therefore x=z$
[Alternate interior angles]
Again, $A B \| C D$
$\Rightarrow \quad x+y=180^{\circ}$
[Co-interior Angles]
$\Rightarrow \quad z+y=180^{\circ}$
[By (1)]

But $y: z=3: 7$
$\therefore z=\left[\frac{180^{\circ}}{(3+7)}\right] \times 7=\frac{180^{\circ}}{10} \times 7=126^{\circ}$
From (1) and (2), we have $x=126^{\circ}$.
3. In the given figure, if $A B \| C D, E F \perp C D$ and $\angle G E D=126^{\circ}$, find $\angle A G E, \angle G E F$ and $\angle F G E$.

Soln.: $A B \| C D$ and $G E$ is a transversal.
$\therefore \angle A G E=\angle G E D$
[Alternate interior angles]
But $\angle G E D=126^{\circ}$
[Given]
$\therefore \angle A G E=126^{\circ}$
Also, $\angle G E F+\angle F E D=\angle G E D$
or $\angle G E F+90^{\circ}=126^{\circ}$
$[\because E F \perp C D$ (given)]
$\angle G E F=126^{\circ}-90^{\circ}=36^{\circ}$
Now, $A B \| C D$ and $G E$ is a transversal.
$\therefore \angle F G E+\angle G E D=180^{\circ}$
[Co-interior angles]
or $\angle F G E+126^{\circ}=180^{\circ}$
or $\angle F G E=180^{\circ}-126^{\circ}=54^{\circ}$
Thus, $\angle A G E=126^{\circ}, \angle G E F=36^{\circ}$ and $\angle F G E=54^{\circ}$.
4. In the given figure, if $P Q \| S T, \angle P Q R=110^{\circ}$ and $\angle R S T=130^{\circ}$, find $\angle Q R S$.
[Hint: Draw a line parallel to $S T$ through point R.]

Soln.: Draw a line parallel to $S T$ through R.

Since $P Q \| S T$
[Given]
and $E F \| S T$
[Construction]
$\therefore \quad P Q \| E F$ and $Q R$ is a transversal

$$
\Rightarrow \quad \angle P Q R=\angle Q R F
$$

[Alternate Interior Angles]

But $\angle P Q R=110^{\circ}$
[Given]
$\therefore \angle Q R F=\angle Q R S+\angle S R F=110^{\circ}$
Again $S T \| E F$ and $R S$ is a transversal
$\therefore \angle R S T+\angle S R F=180^{\circ}$
[Co-interior angles]
or $130^{\circ}+\angle S R F=180^{\circ}$
$\Rightarrow \quad \angle S R F=180^{\circ}-130^{\circ}=50^{\circ}$
Now, from (1), we have
$\angle Q R S+50^{\circ}=110^{\circ}$
$\Rightarrow \angle Q R S=110^{\circ}-50^{\circ}=60^{\circ}$
Thus, $\angle Q R S=60^{\circ}$.
5. In the given figure, if $A B \| C D, \angle A P Q=50^{\circ}$ and $\angle P R D=127^{\circ}$, find x and y.

Soln.: We have $A B \| C D$ and $P Q$ is a transversal.
$\therefore \angle A P Q=\angle P Q R$
[Alternate interior angles]
or $50^{\circ}=x \quad\left[\because \angle A P Q=50^{\circ}\right.$ (Given) $]$
Again, $A B \| C D$ and $P R$ is a transversal.
$\therefore \angle A P R=\angle P R D$
[Alternate interior angles]
$\Rightarrow \quad \angle A P R=127^{\circ}$
$\left[\because \angle P R D=127^{\circ}\right.$ (given) $]$
$\Rightarrow \quad \angle A P Q+\angle Q P R=127^{\circ}$
$\Rightarrow \quad 50^{\circ}+y=127^{\circ}$
$\left[\because \quad \angle A P Q=50^{\circ}\right.$ (given) $]$
$\Rightarrow y=127^{\circ}-50^{\circ}=77^{\circ}$
Thus, $x=50^{\circ}$ and $y=77^{\circ}$.
6. In the given figure, $P Q$ and $R S$ are two mirrors placed parallel to each other. An incident ray $A B$ strikes the mirror $P Q$ at B, the reflected ray moves along the path $B C$ and strikes the mirror $R S$ at C and again reflects back along $C D$. Prove that $A B \| C D$.

Soln.: Draw ray $B L \perp P Q$ and $C M \perp R S$

$\because P Q\|R S \Rightarrow B L\| C M$
$[\because B L \perp P Q$ and $C M \perp R S]$
Now, $B L$ II $C M$ and $B C$ is a transversal.
$\therefore \angle L B C=\angle M C B$
[Alternate interior angles]
Since, angle of incidence $=$ Angle of reflection
$\angle A B L=\angle L B C$ and $\angle M C B=\angle M C D$
$\Rightarrow \quad \angle A B L=\angle M C D$
\therefore Adding (1) and (2), we have $\angle L B C+\angle A B L=\angle M C B+\angle M C D$
$\Rightarrow \quad \angle A B C=\angle B C D$
i.e., a pair of alternate interior angles are equal,
$\therefore A B \| C D$.

Exercise 6.3

1. In the adjoining figure, sides $Q P$ and $R Q$ of $\triangle P Q R$ are produced to points S and T respectively. If $\angle S P R=135^{\circ}$ and $\angle P Q T=110^{\circ}$, find $\angle P R Q$.

Soln.: We have, $\angle T Q P+\angle P Q R=180^{\circ}$
[Linear pair]

$$
\begin{aligned}
& \Rightarrow \quad 110^{\circ}+\angle P Q R=180^{\circ} \\
& \Rightarrow \quad \angle P Q R=180^{\circ}-110^{\circ}=70^{\circ}
\end{aligned}
$$

Since, the side $Q P$ of $\triangle P Q R$ is produced to S.
$\Rightarrow \quad \angle P Q R+\angle P R Q=135^{\circ}$
[Exterior angle property of a Δ]
$\Rightarrow \quad 70^{\circ}+\angle P R Q=135^{\circ} \quad\left[\angle P Q R=70^{\circ}\right]$
$\Rightarrow \angle P R Q=135^{\circ}-70^{\circ} \Rightarrow \angle P R Q=65^{\circ}$
2. In the adjoining figure, $\angle X=62^{\circ}, \angle X Y Z=54^{\circ}$. If $Y O$ and $Z O$ are the bisectors of $\angle X Y Z$ and $\angle X Z Y$ respectively of $\triangle X Y Z$, find $\angle O Z Y$ and $\angle Y O Z$.

Soln.: In $\triangle X Y Z$, we have
$\angle X Y Z+\angle Y Z X+\angle Z X Y=180^{\circ}$
[Angle sum property of a triangle]
But $\angle X Y Z=54^{\circ}$ and $\angle Z X Y=62^{\circ}$
$\therefore 54^{\circ}+\angle Y Z X+62^{\circ}=180^{\circ}$
$\Rightarrow \angle Y Z X=180^{\circ}-54^{\circ}-62^{\circ}=64^{\circ}$
$Y O$ and $Z O$ are the bisectors of $\angle X Y Z$ and $\angle X Z Y$ respectively,
$\therefore \angle O Y Z=\frac{1}{2} \angle X Y Z=\frac{1}{2}\left(54^{\circ}\right)=27^{\circ}$
and $\angle O Z Y=\frac{1}{2} \angle Y Z X=\frac{1}{2}\left(64^{\circ}\right)=32^{\circ}$
Now, in $\triangle O Y Z$, we have

$$
\angle Y O Z+\angle O Y Z+\angle O Z Y=180^{\circ}
$$

[Angle sum property of a triangle]
$\Rightarrow \quad \angle Y O Z+27^{\circ}+32^{\circ}=180^{\circ}$
$\Rightarrow \quad \angle Y O Z=180^{\circ}-27^{\circ}-32^{\circ}=121^{\circ}$
Thus, $\angle O Z Y=32^{\circ}$ and $\angle Y O Z=121^{\circ}$
3. In the given figure, if $A B \| D E, \angle B A C=35^{\circ}$ and $\angle C D E=53^{\circ}$, find $\angle D C E$.

Soln.: $A B \| D E$ and $A E$ is a transversal.
So, $\angle B A C=\angle A E D$
[Alternate interior angles]
and $\angle B A C=35^{\circ}$
[Given]
$\therefore \angle A E D=35^{\circ}$
Now, in $\triangle C D E$, we have
$\angle C D E+\angle D E C+\angle D C E=180^{\circ}$
[Angle sum property of a triangle]
$\therefore 53^{\circ}+35^{\circ}+\angle D C E=180^{\circ}$
$\left[\because \angle D E C=\angle A E D=35^{\circ}\right.$ and $\angle C D E=53^{\circ}$ (Given)]
$\Rightarrow \angle D C E=180^{\circ}-53^{\circ}-35^{\circ}=92^{\circ}$
Thus, $\angle D C E=92^{\circ}$
4. In the adjoining figure, if lines $P Q$ and $R S$ intersect at point T, such that $\angle P R T=40^{\circ}$, $\angle R P T=95^{\circ}$ and $\angle T S Q=75^{\circ}$, find $\angle S Q T$.

Soln.: In $\triangle P R T$, we have
$\angle P+\angle R+\angle P T R=180^{\circ}$
[Angle sum property of a triangle]
$\Rightarrow 95^{\circ}+40^{\circ}+\angle P T R=180^{\circ}$
$\left[\because \angle P=95^{\circ}, \angle R=40^{\circ}\right.$ (given)]
$\Rightarrow \quad \angle P T R=180^{\circ}-95^{\circ}-40^{\circ}=45^{\circ}$
But $P Q$ and $R S$ intersect at T,
$\therefore \angle P T R=\angle Q T S$
[Vertically opposite angles]
$\therefore \angle Q T S=45^{\circ}\left[\because \angle P T R=45^{\circ}\right]$
Now, in $\triangle T Q S$, we have
$\angle T S Q+\angle S T Q+\angle S Q T=180^{\circ}$
[Angle sum property of a triangle]
$\therefore 75^{\circ}+45^{\circ}+\angle S Q T=180^{\circ}$
$\left[\because \angle T S Q=75^{\circ}\right.$ and $\left.\angle S T Q=45^{\circ}\right]$
$\Rightarrow \angle S Q T=180^{\circ}-75^{\circ}-45^{\circ}=60^{\circ}$
Thus, $\angle S Q T=60^{\circ}$
5. In the adjoining figure, if $P Q \perp P S, P Q \| S R$, $\angle S Q R=28^{\circ}$ and $\angle Q R T=65^{\circ}$, then find the values of x and y.

Soln.: In $\triangle Q R S$, the side $S R$ is produced to T.
$\therefore \angle Q R T=\angle R Q S+\angle R S Q$
[Exterior angle property of a triangle]
But $\angle R Q S=28^{\circ}$ and $\angle Q R T=65^{\circ}$
So, $28^{\circ}+\angle R S Q=65^{\circ}$
$\Rightarrow \quad \angle R S Q=65^{\circ}-28^{\circ}=37^{\circ}$
Since, $P Q \| S R$ and $Q S$ is a transversal.
$\therefore \angle P Q S=\angle R S Q=37^{\circ}$
[Alternate interior angles]
$\Rightarrow \quad x=37^{\circ}$
Again, $P Q \perp P S \Rightarrow \angle P=90^{\circ}$
Now, in $\triangle P Q S$, we have
$\angle P+\angle P Q S+\angle P S Q=180^{\circ}$
[Angle sum property of a triangle]
$\Rightarrow 90^{\circ}+37^{\circ}+y=180^{\circ}$
$\Rightarrow y=180^{\circ}-90^{\circ}-37^{\circ}=53^{\circ}$
Thus, $x=37^{\circ}$ and $y=53^{\circ}$
6. In the adjoining figure, the side $Q R$ of $\triangle P Q R$ is produced to a point S. If the bisectors of $\angle P Q R$ and $\angle P R S$ meet at point T, then prove that $\angle Q T R=\frac{1}{2} \angle Q P R$.

Soln.: In $\triangle P Q R$, side $Q R$ is produced to S, so by exterior angle property,
$\angle P R S=\angle P+\angle P Q R$
$\Rightarrow \frac{1}{2} \angle P R S=\frac{1}{2} \angle P+\frac{1}{2} \angle P Q R$
$\Rightarrow \angle T R S=\frac{1}{2} \angle P+\angle T Q R$
[$\because Q T$ and $R T$ are bisectors of $\angle P Q R$ and $\angle P R S$ respectively.]
Now, in $\triangle Q R T$, we have

$$
\begin{equation*}
\angle T R S=\angle T Q R+\angle T \tag{3}
\end{equation*}
$$

[Exterior angle property of a triangle]
From (2) and (3), we have
$\angle T Q R+\frac{1}{2} \angle P=\angle T Q R+\angle T$
$\Rightarrow \frac{1}{2} \angle P=\angle T \Rightarrow \frac{1}{2} \angle Q P R=\angle Q T R$
or $\angle Q T R=\frac{1}{2} \angle Q P R$

EXERCISE

Multiple Choice Questions

Level-1

1. An angle is 18° less than its complementary angle. The measure of this angle is
(a) 36°
(b) 48°
(c) 83°
(d) 81°
2. Supplement of an angle is one fourth of itself. The measure of the angle is
(a) 18°
(b) 36°
(c) 144°
(d) 72°
3. Line $A B$ and $C D$ intersect to O. If $\angle A O C=\left(3 x-10^{\circ}\right)$ and $\angle B O D=\left(20^{\circ}-2 x\right)$, then the value of x, is

(a) 6°
(b) 12°
(c) 36°
(d) 30°
4. If $l \| m$, then value of x is

(a) 60°
(b) 120°
(c) 40°
(d) Cannot be determined
5. The value of x from the adjoining figure, if $l \| m$ is

(a) 15°
(b) 10°
(c) 19°
(d) 36°
6. In $\triangle A B C, \angle A: \angle B: \angle C=2: 3: 5$, then angle at B is
(a) 54°
(b) 126°
(c) 136°
(d) 64°
7. In adjoining figure if $\angle A=\left(3 x+2^{\circ}\right), \angle B=$ $\left(x-3^{\circ}\right), \angle A C D=127^{\circ}$, then $\angle A=$

(a) 24°
(b) 32°
(c) 96°
(d) 98°
8. The value of x if $A O B$ is a straight line, is

(a) 36°
(b) 60°
(c) 30°
(d) 35°
9. If $A B \| C D$, what is the value of x ?

(a) 18°
(b) 15°
(c) 20°
(d) 25°
10. If two parallel lines are intersected by a transversal, then each pair of corresponding angles so formed is
(a) Equal
(b) Complementary
(c) Supplementry
(d) None of these
11. An angle is 14° more than its complementary angle, then angle is
(a) 30°
(b) 52°
(c) 50°
(d) None of these
12. If the supplement of an angle is three times its complement, then angle is
(a) 40°
(b) 35°
(c) 50°
(d) 45°
13. Which one of the following statement is not false ?
(a) If two angles forming a linear pair, then each of these angle is of measure 90°.
(b) Angles forming a linear pair can both be acute angles.
(c) Both of the angles forming a linear pair can be obtuse angles.
(d) Bisectors of the adjacent angles forming a linear pair form a right angle.
14. Calculate the value of x.

(a) 270°
(b) 70°
(c) 15°
(d) 45°
15. Calculate the value of x.

(a) 141°
(b) 70°
(c) 105°
(d) 45°
16. In figure, if $l \| m$, then $x=$

(a) 145°
(b) 125°
(c) 115°
(d) 140°
17. In Q.16, value of $y=$
(a) 45°
(b) 65°
(c) 55°
(d) 82°
18. In figure, if $l\|m, l\| n$ and $x: y=3: 2$, then $z=$

(a) 120°
(b) 126°
(c) 108°
(d) 154°
19. In figure, if $l \| m$, then $x=$

(a) 120°
(b) 110°
(c) 90°
(d) 98°
20. In figure, if $l\|m, m\| n$, then $x=$

(a) 130°
(b) 140°
(c) 120°
(d) 154°
21. Find the value of x.

(a) 70°
(b) 75°
(c) 60°
(d) 65°
22. Find $\angle D C E$.

(a) 45°
(b) 60°
(c) 50°
(d) 55°
23. If two interior angles on the same side of a transversal intersecting two parallel lines are in the ratio $5: 4$, then the greater of the two angles is
(a) 54°
(b) 100°
(c) 120°
(d) 136°
24. If $A O B$ is a straight line, then x is

(a) 60°
(b) 30°
(c) 90°
(d) 40°
25. In the adjoining figure, if $l \| m$ and n be the transversal, then the relation between $\angle 1$ and $\angle 2$ is

(a) $\angle 1=\angle 2$
(b) $\angle 1+\angle 2=180^{\circ}$
(c) $\angle 1-\angle 2=90^{\circ}$
(d) $\angle 1+\angle 2=90^{\circ}$

Level-2

26. If angle with measure x and y form a complementary pair, then angles with which of the following measures will form a supplementary pair ?
(a) $\left(x+47^{\circ}\right),\left(y+43^{\circ}\right)$
(b) $\left(x-23^{\circ}\right),\left(y+23^{\circ}\right)$
(c) $\left(x-43^{\circ}\right),\left(y-47^{\circ}\right)$
(d) No such pair is possible
27. If one angle of a triangle is equal to the sum of the other two angles, then triangle is a/an
(a) acute angled triangle
(b) obtuse angled triangle
(c) right angled triangle
(d) none of these
28. In figure, if $A B\|C D, C D\| E F$ and $y: z=4: 5$, $\angle x=$

(a) 100°
(b) 76°
(c) 82°
(d) 122°
29. In figure, lines $A B$ and $C D$ intersect at O. If $\angle A O C+\angle B O E=100^{\circ}$ and $\angle B O D=60^{\circ}$, find $\angle B O E$ and reflex $\angle C O E$ respectively.

(a) $40^{\circ}, 280^{\circ}$
(b) $40^{\circ}, 260^{\circ}$
(c) $30^{\circ}, 260^{\circ}$
(d) $30^{\circ}, 250^{\circ}$
30. In figure, lines $X Y$ and $M N$ intersect at O. If $\angle P O Y=70^{\circ}$ and $x: y=3: 2$, find z.

(a) 70°
(b) 95°
(c) 136°
(d) 120°

Fill in the Blanks

1. If a transversal intersects two parallel lines, then the sum of the interior angles on the same side of the transversal is \qquad
2. Lines which are parallel to the same line are
\qquad to each other.
3. In figure, $A B \| C D$ and transversal $E F$ cuts them at G and H respectively. If $\angle A G E=110^{\circ}$, then $\angle G H D=$ \qquad

4. In figure, a transversal $P Q$ intersects two parallel lines $A B$ and $C D$ at L and M respectively. If $\angle 1=95^{\circ}$, then $\angle 2=$

5. In figure, if $A O B$ is a straight line, then $\angle B O C=$ \qquad

6. In figure, $B O A$ is a straight line and $\angle B O C$ is greater than $\angle C O A$ by 60°, then $\angle B O C=$ \qquad

7. In figure, if $\angle B O C=7 x+20^{\circ}$ and $\angle C O A=3 x$, the magnitude of x which makes $A O B$ a straight line is \qquad

8. In figure, $A O B$ is a straight line, if $\angle C O A=\angle D O B$, then $x=$ \qquad ...

9. In figure, $x=$ \qquad

10. In figure, $\angle x=$

True or False

1. Angles forming a linear pair are supplementary.
2. If two adjacent angles are equal, then each angle measure 90°.
3. Angles forming a linear pair can be both acute angles.
4. If angles forming a linear pair are equal, then each of these angles is of measure 90°.
5. If two lines intersect each other and one pair of vertically opposite angles is formed by acute angles, then the other pair of vertically opposite angles will be formed by obtuse angles.
6. If two lines are intersected by a transversal, then corresponding angles are equal.
7. If two parallel lines are intersected by a transversal, then alternate angles are equal.
8. If two lines are intersected by a transversal, then angles on the same side of transversal are supplementary.
9. Two angles are complementary if their sum is 90°.
10. The supplementary angles have their sum equal to 360°.

Match the Following

In this section each question has two matching lists. Choices for the correct combination of elements from List-I and List-II are given as options (a), (b), (c) and (d) out of which one is correct.

1. Use the given figure to match List-I with List-II.

List-I

(P) Angles m and y are
(Q) Angles a and d are
(R) Angles d and u are
(S) Angles u and g are

Code :

	\mathbf{P}	\mathbf{Q}	\mathbf{R}	\mathbf{S}
(a)	3	1	2	4
(b)	2	1	4	3
(c)	4	2	1	3
(d)	1	4	3	2

2. Use the given figure to match List-I with List-II.

List-I
(P) Corresponding angles
(Q) Alternate interior angles
(R) Alternate exterior angles
(S) Co-interior angles

Code :

	\mathbf{P}	\mathbf{Q}	\mathbf{R}	\mathbf{S}
(a) 4	1	2	3	
(b)	3	2	4	1
(c)	4	2	1	3
(d)	3	4	1	2

Assertion \& Reason Type

Directions : In each of the following questions, a statement of Assertion is given followed by a corresponding statement of Reason just below it. Of the statements, mark the correct answer as
(a) If both assertion and reason are true and reason is the correct explanation of assertion.
(b) Ifboth assertion and reason are true but reason is not the correct explanation of assertion.
(c) If assertion is true but reason is false.
(d) If assertion is false but reason is true.

1. Assertion : Two adjacent angles always form a linear pair.
Reason : In a linear pair of angles two noncommon arms are opposite rays.
2. Assertion : The bisectors of the angles of a linear pair are at right angles.
Reason : If the sum of two adjacent angles is 180°, then the non-common arms of the angles are in a straight line.
3. Assertion : If a line is perpendicular to one of the two given parallel lines then it is also perpendicular to the other line.
Reason : If two lines are intersected by a transversal then the bisectors of any pair of alternate interior angles are parallel.
4. Assertion : In figure, if $X Y$ is parallel to $P Q$, then the angles x and y are 70° and 45° respectively.

Reason : Sum of angles of a triangle is 180°.
5. Assertion : In the given figure, if $A B \| C D$ and $\angle F=30^{\circ}$, then $\angle F C D$ is 120°.

Reason : If two parallel lines are intersected by a transversal, then co-interior angles are equal.

Comprehension Type

PASSAGE-I : If a transversal intersects two parallel lines, then
(i) each pair of corresponding angles are equal
(ii) each pair of alternate interior angles are equal
(iii) each pair of co-interior angles are supplementary.

1. In the given figure, $A B \| P Q$. The values of x and y respectively are

(a) $50^{\circ}, 70^{\circ}$
(b) $70^{\circ}, 50^{\circ}$
(c) $75^{\circ}, 45^{\circ}$
(d) $20^{\circ}, 75^{\circ}$
2. In the figure, $A B \| C D$. Then the value of $p+q-r=$

(a) 80°
(b) 180°
(c) 100°
(d) 360°
3. In the given figure, $P Q \| R S$ and $\angle Q X N=105^{\circ}$, $\angle R Y N=45^{\circ}$, find $\angle X N Y$.

(a) 45°
(b) 30°
(c) 60°
(d) 120°

PASSAGE-II : The sum of all the angles formed on the same side of a line at a given point on the line is 180°.

1. Find largest angle, if $A O B$ is a straight line.

(a) 60°
(b) 30°
(c) 80°
(d) 90°
2. If three straight lines $A B, P Q$ and $R S$ intersect at O. Find the value of x from the given figure.

(a) 20°
(b) 17°
(c) 27°
(d) 54°
3. In the given figure $A B$ and $C D$ are two lines intersecting at O. If $\angle A O C$ and $\angle B O C$ are in ratio $2: 3$, find all angles.

(a) $72^{\circ}, 108^{\circ}, 108^{\circ}, 72^{\circ}$
(b) $45^{\circ}, 100^{\circ}, 100^{\circ}, 45^{\circ}$
(c) $30^{\circ}, 120^{\circ}, 30^{\circ}, 120^{\circ}$
(d) $50^{\circ}, 120^{\circ}, 50^{\circ}, 120^{\circ}$

PASSAGE-III : If a transversal intersects two lines in such a way that a pair of alternate interior angles are equal, or each pair of co-interior angles are supplementary then the two lines are parallel.

1. From the given figure for what value of $\angle 2$ if $l \| m$.

(a) 120°
(b) 180°
(c) 60°
(d) 100°
2. In the given figure, $A B C$ is an isosceles triangle with $A B=A C$ and $A P \| B C, \angle B A C=50^{\circ}$. Find $\angle D A P$

(a) 50°
(b) 60°
(c) 65°
(d) 70°
3. In the given figure $A B \| D E$. If $\angle B=45^{\circ}$ and $\angle D E C=75^{\circ}$. Find $\angle A C D$.

(a) 60°
(b) 90°
(c) 150°
(d) 120°

Subjective Problems

Very Short Answer Type

1. In the figure $A B\|C D\| E F$, find the angles marked as x and y.

2. In the figure, $A B \| C D$. Find the values of x and y.

3. In the figure $A D \| B E$ and $A C \| D E$, find a and b.

4. In the figure, find the value of x, if $A E$ is bisector of angle A in the triangle $A B C$.

5. In figure, if $Q T \perp P R, \angle T Q R=40^{\circ}$ and $\angle S P R=30^{\circ}$, find x.

6. In figure, $A B \| E F, \angle A B C=70^{\circ}$ and $\angle E F D=40^{\circ}$, then find x.

7. In figure, $\angle P O R$ and $\angle Q O R$ form a linear pair. If $a-b=80^{\circ}$, find the value of a and b.

8. In the figure, $A B \| D E$. Find the value of $\angle B C D$.

9. From the adjoining figure, find x, y and z.

10. In the given figure, $A B\|C D, P F\| Q E$. Find value of x and y.

Short Answer Type

1. In the given figure, $A D$ divides $\angle B A C$ in the ratio $1: 3$ and $A D=D B$. Determine the value of x.

2. In figure, $A B \| C D$ and $C D \| E F$. Also $E A \perp A B$. If $\angle B E F=55^{\circ}$, find the values of x, y and z.

3. In the figure, $A B \| C D$ and $P Q \| R S$, find the value of angles $1,2,3,4,5,6$ and 7 .

4. The sides $B A$ and $D C$ of the parallelogram $A B C D$ are produced as shown in figure. Prove that $a+b=x+y$.

5. In the figure given, $A B \| D F$ and $A D \| F G$ find x and y.

6. $P Q R S T$ is a regular pentagon and bisector of $\angle T P Q$ meets $S R$ at L. If bisector of $\angle S R Q$ meets $P L$ at M, find $\angle R M L$.

7. In figure, if $A B\|D E, D E\| F G, C D \| E F$, $\angle 2=55^{\circ}$ and $\angle 4=60^{\circ}$, then find $\angle 1$ and $\angle 3$.

8. In the adjoining figure $O E$ bisects $\angle A O C, O F$ bisects $\angle C O B$ and $O E \perp O F$. Show that A, O, B are collinear.

9. In figure, $A B \| D E$. Prove that
$\angle A B C+\angle B C D=180^{\circ}+\angle C D E$.

10. In the given figure, $A B \| C D$. Find the value of x.

Long Answer Type

1. In the given figure, $P S$ is the angle bisector of the $\angle Q P R$. $P T \perp Q R$. Prove that $\angle T P S=7.5^{\circ}$.

2. In the given figure, $2 b-a=65^{\circ}$ and $\angle B O C=90^{\circ}$, find the measure of $\angle A O B, \angle A O D$ and $\angle C O D$.

3. In a $\triangle A B C, \angle A B C=90^{\circ}$ and $B D \perp A C$. Prove that $\angle A B D=\angle A C B$.
4. In figure, the sides $A B$ and $A C$ of $\triangle A B C$ are produced to points D and E respectively. If bisectors $B P$ and $C P$ of $\angle C B D$ and $\angle B C E$ respectively meet
 at point P, then find $\angle B P C$.
5. In the figure, $l\|m\| n$ and $A D \| B C$. Find the value of angles $1,2,3,4,5$ and 6 .

Integer Answer Type

In this section, each question, when worked out will result in one integer from 0 to 9 (both inclusive).

1. In the given figure, $A B \| C D$. Find the value of $\frac{x}{25^{\circ}}$.

2. If an angle x is supplement of itself. Then value of $\frac{x-60^{\circ}}{6^{\circ}}$ is
3. Angles of a triangle are in ratio $1: 2: 3$, then the greatest angle is what times to the smallest angle.
4. If two interior angles on the same side of a transversal intersecting two parallel lines are in the ratio of $1: 4$. Then what will be the result if difference of the angles is divided by smaller angle.

Directions (5-10) : In the given figure, $l \| m$ and $p \| q$.

5. $\frac{a}{\varrho^{\circ}}=$
6. Angle b when divided by 21° is
7. What is the sum of digits of angle c ?
8. What is the sum of digits of angle d ?
9. Value of $\frac{e+5^{\circ}}{10^{\circ}}$ is
10. Calculate $\frac{f-5^{\circ}}{25^{\circ}}$.

CHAPTER 6

Lines and Angles

Multiple Choice Questions

1. (a) : Let the angle be x.
\therefore its complement $=x+18^{\circ}$
$\Rightarrow x+x+18^{\circ}=90^{\circ} \Rightarrow 2 x=90^{\circ}-18^{\circ}$
$\Rightarrow 2 x=72^{\circ} \Rightarrow x=36^{\circ}$
2. (c) : Let the angle be x
\therefore its supplement $=\frac{1}{4}$ of $x=\frac{1}{4} x$
$\Rightarrow x+\frac{1}{4} x=180^{\circ} \Rightarrow \frac{5 x}{4}=180^{\circ}$
$\Rightarrow x=\frac{180^{\circ} \times 4}{5}=144^{\circ}$
3. (a) : Since vertically opposite angles are always equal
$\therefore \quad\left(3 x-10^{\circ}\right)=\left(20^{\circ}-2 x\right)$
$\Rightarrow 3 x+2 x=20^{\circ}+10^{\circ}$
$\Rightarrow 5 x=30^{\circ} \Rightarrow x=6^{\circ}$.
4. (a) : $\angle 1+120^{\circ}=180^{\circ}$ [Linear pair]
$\Rightarrow \angle 1=180^{\circ}-120^{\circ}$
$\Rightarrow \angle 1=60^{\circ}$
Since $l \| m$

$\angle x=\angle 1=60^{\circ}$
[Corresponding Angles]
5. (a) : Since $l \| m$
$\Rightarrow 120^{\circ}-x+5 x=180^{\circ} \quad$ [Co-interior angles]
$\Rightarrow 120^{\circ}+4 x=180^{\circ}$
$\Rightarrow 4 x=60^{\circ} \Rightarrow x=15^{\circ}$
6. (a): $\angle A: \angle B: \angle C=2: 3: 5$
$\Rightarrow \angle A=2 x, \angle B=3 x, \angle C=5 x$
$\therefore \angle A+\angle B+\angle C=2 x+3 x+5 x=10 x$
$\Rightarrow 10 x=180^{\circ}$ [Angle sum property of a triangle]
$\Rightarrow x=18^{\circ}$
$\Rightarrow \angle B=3 \times 18^{\circ}=54^{\circ}$
7. (d): In $\triangle A B C$
$\angle A C D=\angle A+\angle B$
[By exterior angle property of a triangle]
$\Rightarrow 127^{\circ}=3 x+2^{\circ}+x-3^{\circ} \Rightarrow 127^{\circ}=4 x-1^{\circ}$
$\Rightarrow 128^{\circ}=4 x$
$\Rightarrow x=32^{\circ}$
$\therefore \angle A=\left(3 x+2^{\circ}\right)=3 \times 32^{\circ}+2^{\circ}$

$$
=96^{\circ}+2^{\circ}=98^{\circ}
$$

8. (b):

$\angle 1=x \quad$ [Vertically opposite angles]
Since $A O B$ is a straight line
$\Rightarrow x+x+x=180^{\circ} \Rightarrow 3 x=180^{\circ}$
$\therefore x=60^{\circ}$
9. (c) : Since $A B \| C D$
$\Rightarrow x+2 x+x+5 x=180^{\circ}$ [Co-interior angles]
$\Rightarrow 9 x=180^{\circ}$
$\therefore x=20^{\circ}$
10. (a)
11. (b): Let the angle be x.

Complement of $x=\left(90^{\circ}-x\right)$
Since the difference is 14°, we have

$$
\begin{aligned}
& x-\left(90^{\circ}-x\right)=14^{\circ} \\
\Rightarrow & 2 x=104^{\circ} \Rightarrow x=52^{\circ} .
\end{aligned}
$$

12. (d): Let the angle be x.

Complement of $x=90^{\circ}-x$
Supplement of $x=180^{\circ}-x$
Given that, $180^{\circ}-x=3\left(90^{\circ}-x\right)$
$\Rightarrow 180^{\circ}-x=270^{\circ}-3 x$
$\Rightarrow 2 x=270^{\circ}-180^{\circ}$
$\Rightarrow 2 x=90^{\circ} \Rightarrow x=45^{\circ}$.
13. (d)
14. (c) : $8 x+3 x+x=180^{\circ} \quad$ [Linear Pair] $12 x=180^{\circ} \Rightarrow x=15^{\circ}$.
15. (a) : $104^{\circ}+90^{\circ}+25^{\circ}+x=360^{\circ}$
[Complete Angle]
$\Rightarrow x=141^{\circ}$.
16. (b): Since $l \| m$, then

$$
y=55^{\circ}
$$

[Corresponding Angles]
Now, $x+y=180^{\circ}$
[Linear Pair]
$\Rightarrow x+55^{\circ}=180^{\circ}$
$\Rightarrow x=125^{\circ}$
17. (c)
18. (c): We have, $l\|m, l\| n \Rightarrow m \| n$.

Now, $x: y=3: 2$
$\Rightarrow x=\frac{3}{2} y$
Also $x+y=180^{\circ} \quad$ [Co-interior Angles]
$\Rightarrow \frac{3}{2}+180^{\circ} \Rightarrow 72^{\circ}$
Also, $x=z \quad$...(ii) [Alternate Interior Angles]
From (i) and (ii), we have
$z=\frac{3}{2} y \Rightarrow z=\frac{3}{2} \times 72^{\circ}=108^{\circ}$
19. (b): Since $l \| m$,
$70^{\circ}+x=180^{\circ}$
[Co-interior Angles]
$\Rightarrow x=110^{\circ}$
20. (a) : Since $l \| m$ and $m \| n$, then $l \| n$
$\Rightarrow x+50^{\circ}=180^{\circ}$
[Co-interior Angles]
$\Rightarrow x=130^{\circ}$.
21. (b): $x+\left(180^{\circ}-130^{\circ}\right)+\left(180^{\circ}-125^{\circ}\right)=180^{\circ}$
[Angle sum property of a triangle]
$\Rightarrow x+50^{\circ}+55^{\circ}=180^{\circ} \Rightarrow x=75^{\circ}$.
22. (d): $\angle A C B=180^{\circ}-\left(50^{\circ}+75^{\circ}\right)=55^{\circ}$
[Angle sum property of a triangle]
$\therefore \quad \angle D C E=\angle A C B=55^{\circ}$
[Vertically opposite angles]
23. (b): Let the angle be $5 x$ and $4 x$.

Since, these two angles are co-interior angles.
So, we have

$$
5 x+4 x=180^{\circ}
$$

$\Rightarrow 9 x=180^{\circ}$
$\Rightarrow x=20^{\circ}$.
Hence, greater angle $=5 x=5 \times 20^{\circ}=100^{\circ}$
24. (d): Since, $A O B$ is a straight line
$\therefore\left(2 x+40^{\circ}\right)+\left(x-20^{\circ}\right)+x=180^{\circ}$
$\Rightarrow 4 x+20^{\circ}=180^{\circ}$
$\Rightarrow 4 x=160^{\circ}$
$\Rightarrow x=40^{\circ}$
25. (b): Since $l \| m$ and n is a transversal line.

$\therefore \angle x=\angle 1 \quad$ (Alternate interior angles)
and $\angle x+\angle 2=180^{\circ}$ (Linear pair)
$\Rightarrow \angle 1+\angle 2=180^{\circ}$
26. (a) : x and y forms a complementary pair
$\Rightarrow x+y=90^{\circ}$
Now, $x+47^{\circ}+y+43^{\circ}=x+y+47^{\circ}+43^{\circ}$

$$
=x+y+90^{\circ}=90^{\circ}+90^{\circ}=180^{\circ}
$$

$\therefore \quad\left(x+47^{\circ}\right)$ and $\left(y+43^{\circ}\right)$ form a supplementary pair.
27. (c) : Let A, B, C be the three angles of a triangle.
$\angle A=\angle B+\angle C$
[Given]
Also, $\angle A+\angle B+\angle C=180^{\circ}$
[Angle sum property of a triangle]
$\Rightarrow \angle A+\angle A=180^{\circ}$
$\Rightarrow 2 \angle A=180^{\circ} \Rightarrow \angle A=90^{\circ}$
\therefore Triangle is a right angled triangle.
28. (a) : Given that $A B \| C D$ and $C D \| E F$
$\therefore A B\|C D\| E F$

$$
\begin{aligned}
& x+y=180^{\circ} \ldots \text {..(i) [Co-interior Angles] } \\
& y+z=180^{\circ} \ldots \text { (ii) }
\end{aligned}
$$

[$\angle D H I=y$, (Vertically Opposite Angles)]
Given that $y: z=4: 5$
$\Rightarrow y=\frac{4}{5} z$
Substituting in (ii), we get

$$
\begin{aligned}
& \frac{45}{5}+=180^{\circ} \Rightarrow \frac{9}{5}=180^{\circ} \\
\Rightarrow & z=\frac{180^{\circ} \times 5}{9} \Rightarrow z=100^{\circ}
\end{aligned}
$$

Substituting value of z in (ii), we get

$$
y+100^{\circ}=180^{\circ} \Rightarrow y=80^{\circ}
$$

From (i), we have
$x+80^{\circ}=180^{\circ}$
$\Rightarrow x=100^{\circ}$.
29. (a) : $A B$ and $C D$ intersect at O.
$\Rightarrow \angle A O C=\angle B O D$
(vertically opposite angles)
$\Rightarrow \angle A O C=60^{\circ}$
Now, $\angle A O C+\angle B O E=100^{\circ}$ (given)
$\Rightarrow \angle B O E=100^{\circ}-60^{\circ}$
$\Rightarrow \angle B O E=40^{\circ}$
$A O B$ is a straight line.
$\Rightarrow \angle A O C+\angle C O E+\angle E O B=180^{\circ}$
$\Rightarrow 60^{\circ}+\angle C O E+40^{\circ}=180^{\circ}$
$\Rightarrow \angle C O E=180^{\circ}-100^{\circ}$
$\Rightarrow \angle C O E=80^{\circ}$
Reflex $\angle C O E=360^{\circ}-80^{\circ}=280^{\circ}$
30. (c) : $x: y=3: 2$

Let $x=3 a$ and $y=2 a$
Now, $X O Y$ is a straight line.
$\therefore x+y+\angle P O Y=180^{\circ}$
$\Rightarrow 3 a+2 a+70^{\circ}=180^{\circ}$
$\Rightarrow 5 a=110^{\circ}$
$\Rightarrow a=22^{\circ}$
Hence, $x=3 a=3 \times 22^{\circ}=66^{\circ}$
and $y=2 a=2 \times 22^{\circ}=44^{\circ}$
Now, $X Y$ and $M N$ intersect at O.
$\therefore \quad z=x+\angle P O Y$ (vertically opposite angles)
$\Rightarrow z=66^{\circ}+70^{\circ}$
$\Rightarrow z=136^{\circ}$

Fill in the Blanks

1. 180°
2. Parallel
3. $70^{\circ}: C D \| A B$ and $\angle A G E=110^{\circ}$
$\Rightarrow \angle B G H=\angle A G E=110^{\circ}$
[Vertically Opposite Angles]
And, $\angle B G H+\angle G H D=180^{\circ}$ [Co-interior
Angles]
$\Rightarrow \angle G H D=180^{\circ}-110^{\circ}=70^{\circ}$
4. $95^{\circ}: A B \| C D$
$\Rightarrow \angle 1=\angle B L M \quad$ [Vertically Opposite Angles]
$\Rightarrow \angle B L M=95^{\circ}$
$\therefore \quad \angle 2=95^{\circ} \quad$ [Corresponding Angles]
5. $43: A O B$ is straight line
$\Rightarrow(x)^{\circ}+(x+3)^{\circ}+(2 x+5)^{\circ}=180^{\circ}$
$\Rightarrow 4 x=180-8$
$\Rightarrow 4 x=172 \Rightarrow x=43$
6. $120^{\circ}: \angle B O C=\angle C O A+60^{\circ}$
$B O A$ is a straight line
$\therefore \quad \angle B O C+\angle C O A=180^{\circ}$
$\Rightarrow 2 \angle C O A=180^{\circ}-60^{\circ}$
$\Rightarrow \angle C O A=60^{\circ}$
So, $\angle B O C=120^{\circ}$
7. $\mathbf{1 6}^{\circ}$: For $B O A$ to be a straight line
$\angle B O C+\angle C O A=180^{\circ}$
$\Rightarrow 7 x+20^{\circ}+3 x=180^{\circ}$
$\Rightarrow 10 x=160^{\circ} \quad \therefore \quad x=16^{\circ}$
8. $\frac{\mathbf{8 0}}{\mathbf{3}}: A O B$ is a straight line.
$\Rightarrow \angle A O C+\angle C O D+\angle D O B=180^{\circ}$
$\Rightarrow(x+40)^{\circ}+(x+20)^{\circ}+(x+40)^{\circ}=180^{\circ}$
$\Rightarrow 3 x+100=180 \Rightarrow 3 x=80$
$\therefore=\frac{80}{3}$
9. $59^{\circ}: 2 x+4+x-1=180^{\circ} \quad$ [Linear Pair
$\Rightarrow 3 x+3=180^{\circ}$
$\Rightarrow 3 x=177^{\circ} \Rightarrow x=59^{\circ}$
10. $55^{\circ}, 125^{\circ}, 125^{\circ}$:
$\angle x=55^{\circ} \quad$ [Vertically Opposite Angles]
Also, $\angle x+\angle y=180^{\circ} \quad$ [Linear Pair]
$\Rightarrow \angle y=180^{\circ}-55^{\circ}=125^{\circ}$
Now, $\angle z=\angle y=125^{\circ}$ [Vertically Opposite
Angles]
$\therefore \quad \angle x=55^{\circ}, \angle y=125^{\circ}, \angle z=125^{\circ}$.

True or False

1. True
2. False : The measure of each adjacent angle that are equal may not be equal to 90°.
3. False : Angles forming a linear pair cannot be both acute angles because then their sum cannot be 180°.
4. True : $x+x=180^{\circ}$
[Linear pair]
$\Rightarrow 2 x=180^{\circ}$
$\Rightarrow x=90^{\circ}$
\therefore If each angle forming a linear pair are equal then each angle is of measure 90°.
5. True : $\angle 1+\angle 2=180^{\circ}$
[Linear pair]

If $\angle 1<90^{\circ}$
(acute)
$\Rightarrow \angle 2>90^{\circ}$
(obtuse)
$\Rightarrow \angle 1$ and $\angle 3$ are acute and $\angle 2$ and $\angle 4$ are obtuse.
6. False : If two parallel lines are intersected by a transversal, then corresponding angles are equal.
7. True
8. False : Two lines must be parallel.
9. True
10. False : Sum of supplementary angles is 180°.

Match the Following

1. (b): P $\rightarrow 2 ; \mathrm{Q} \rightarrow 1 ; \mathrm{R} \rightarrow 4 ; \mathrm{S} \rightarrow 3$

(P) Angles m and $y \rightarrow$ Alternate exterior pair of angles
(Q) Angles a and $d \rightarrow$ Alternate interior pair of angles
(R) Angles d and $u \rightarrow$ Corresponding angles
(S) Angles u and $g \rightarrow$ Vertically opposite angles.
2. (d): $\mathrm{P} \rightarrow 3 ; \mathrm{Q} \rightarrow 4 ; \mathrm{R} \rightarrow \mathbf{1} ; \mathrm{S} \rightarrow \mathbf{2}$

(P) Corresponding angles $\rightarrow \angle 1=\angle 5$
(Q) Alternate interior angles $\rightarrow \angle 4=\angle 6$
(R) Altenate exterior angles $\rightarrow \angle 1=\angle 7$
(S) Co-interior angles $\rightarrow \angle 4+\angle 5=180^{\circ}$

Assertion \& Reason Type

1. (d): Two adjacent angles do not always form a linear pair.
In a linear pair of angles two non-common arms are opposite rays.
Assertion: False; Reason: True
2. (b): $\angle A O C+\angle B O C=180^{\circ} \quad$ [Linear Pair]
$\frac{1}{2}(\angle A O C+\angle B O C)=\frac{180^{\circ}}{2}$
$\frac{1}{2} \angle A O C+\frac{1}{2} \angle B O C=90^{\circ}$
$\Rightarrow \angle D O C+\angle E O C=90^{\circ}$.

\therefore The bisectors of the angles of a linear pair are at right angles.
Assertion: True; Reason: True but is not the correct explanation of assertion.
3. (c) $: l \| m$ and $n \perp l$

$\Rightarrow \angle 1=90^{\circ}$
[Corresponding angles]
$\Rightarrow n \perp m$
Reason is false. It can be stated in case of parallel lines.
Assertion: True; Reason : False.
4. (d): $X Y \| P Q$ and $E F$ is a transversal
$\Rightarrow \angle E B Q=\angle E A Y \quad$ (Corresponding angles)
$\Rightarrow 20^{\circ}+y=60^{\circ}$
$\Rightarrow y=60^{\circ}-20^{\circ}$
$\Rightarrow y=40^{\circ}$
Now, in $\triangle A B D$,
$x+20=\angle E A D \quad$ (External angle property)
$\Rightarrow x+20^{\circ}=60^{\circ}+35$
$\Rightarrow x=95^{\circ}-20^{\circ}$
$\Rightarrow x=75^{\circ}$
Assertion: False; Reason: True
5. (c) : In $\triangle A F E$, by pythagoras theorem.
$\angle F+\angle A+\angle A E F=180^{\circ}$
$\Rightarrow 30^{\circ}+90^{\circ}+\angle A E F=180^{\circ}$
$\Rightarrow \angle A E F=180^{\circ}-120^{\circ}$
$\Rightarrow \angle A E F=60^{\circ}$
$A B$ and $F C$ intersect at E
$\therefore \quad \angle A E F=\angle B E C$ (vertically opposite angles)
$\Rightarrow \angle B E C=60^{\circ}$
Now, $A B \| C D$ and $E C$ is a transversal
$\Rightarrow \angle B E C+\angle E C D=180^{\circ}$ (Co-interior angles)
$\Rightarrow \angle E C D=180^{\circ}-60^{\circ}$
$\Rightarrow \angle E C D=120^{\circ}$
Assertion: True; Reason: False.

Comprehension Type

PASSAGE-I

1. (b): $\angle C E B=\angle E F Q$ [Corresponding angles]
$\Rightarrow 25^{\circ}+y=75^{\circ}$
$\Rightarrow y=50^{\circ}$

Also, $\angle F E B+\angle E F Q=180^{\circ}$ [Co-interior angles]
$(\angle F E G+\angle G E B)+\left(25^{\circ}+y^{\circ}\right)=180^{\circ}$
$\angle F E G+20^{\circ}+25^{\circ}+50^{\circ}=180^{\circ}$
$\Rightarrow \angle F E G=85^{\circ}$
In $\triangle E F G, \angle F E G+\angle E F G+x=180^{\circ}$
$\Rightarrow 85^{\circ}+25^{\circ}+x=180^{\circ} \Rightarrow x=70^{\circ}$.
2. (b): Draw $H K$ parallel to $A B$, let $\angle E F H$ be x and

$\angle H F G$ be y such that $x+y=q$.
$p+x=180^{\circ}$
[Co-interior Angles]
$y=r \quad$ [Alternate Interior Angles]
Adding both equations, we get

$$
\begin{aligned}
& p+x+y=180^{\circ}+r \\
\Rightarrow & p+q=180^{\circ}+r \\
\Rightarrow & p+q-r=180^{\circ}
\end{aligned}
$$

3. (d): Construction : Draw $l|\mid P Q$

$\Rightarrow \angle 1+\angle Q X N=180^{\circ}$ [Co-interior Angles]
$\therefore \angle 1=180^{\circ}-105^{\circ}=75^{\circ}$
And,
$\therefore \quad \angle 2=\angle R Y N \quad$ [Alternate Interior Angles]
$\Rightarrow \angle 2=45^{\circ}$
$\Rightarrow \angle X N Y=\angle 1+\angle 2=75^{\circ}+45^{\circ}=120^{\circ}$

PASSAGE-II

1. $(\mathrm{d}): y+2 y+3 y=180^{\circ} \quad$ [Linear Pair]
$\Rightarrow 6 y=180^{\circ} \Rightarrow y=30^{\circ}$
\therefore largest angle $=3 y=3 \times 30^{\circ}=90^{\circ}$
2. (c) : $\angle R O A=x, \angle P O A=4 x$ and $=\angle R O Q=45^{\circ}$
$P O Q$ is a straight line
$\Rightarrow \angle R O A+\angle A O P+\angle R O Q=180^{\circ}$
[Linear Pair]
$\Rightarrow x+4 x+45^{\circ}=180^{\circ}$
$\Rightarrow 5 x=180^{\circ}-45^{\circ}=135^{\circ}$
$\Rightarrow x=27^{\circ}$
3. (a): $\angle A O C+\angle B O C=180^{\circ} \quad$ [Linear Pair]

Let $\angle A O C=2 x$ and $\angle B O C=3 x$
$\therefore \quad 2 x+3 x=180^{\circ} \Rightarrow x=36^{\circ}$
Thus, $\angle A O C=72^{\circ}, \angle B O C=108^{\circ}$,
$\angle A O D=108^{\circ}, \angle B O D=72^{\circ}$.

PASSAGE-III

1. (c) : $\angle 1=120^{\circ}$ [Vertically Opposite Angles]

For $l \| m$, co-interior angles must be supplementary, so $\angle 1+\angle 2=180^{\circ}$
$\Rightarrow 120^{\circ}+\angle 2=180^{\circ} \quad \therefore \angle 2=60^{\circ}$
2. (c) : Since $A B C$ is an isosceles triangle.
$\therefore A B=A C \Rightarrow \angle B=\angle C$
Now, in $\triangle A B C$,

$$
\angle A+\angle B+\angle C=180^{\circ}
$$

[Angle sum property of Δ]
$\Rightarrow 2 \angle B=180^{\circ}-50^{\circ}$
$\Rightarrow 2 \angle B=130^{\circ} \Rightarrow \angle B=65^{\circ}$
Since $\angle P A C=\angle A C B$ [Alternate Interior Angles]
$\therefore \angle P A C=65^{\circ}$
$\angle P A C+\angle D A P+\angle B A C=180^{\circ} \quad[$ Linear Pair $]$
$\therefore \angle D A P=180^{\circ}-65^{\circ}-50^{\circ}$
$\Rightarrow \angle A D P=65^{\circ}$.
3. (d): $A B$ || $D E$ [Given]
$\angle A B C=\angle E D C \quad$ [Alternate Interior Angles]
$\Rightarrow \angle E D C=45^{\circ}$
Now, in $\triangle D E C$,
$\angle D C A$ is exterior angle
So, $\angle D C A=\angle D E C+\angle E D C$
[Exterior angle property of a Δ]
$=75^{\circ}+45^{\circ}=120^{\circ}$

Subjective Problems

Very Short Answer Type

1. $x+25^{\circ}=180^{\circ}$
[Co-interior Angles]
$\therefore x=180^{\circ}-25^{\circ}=155^{\circ}$
Now $y+25^{\circ}=75^{\circ}$ [Alternate Interior Angles]
$\therefore y=75^{\circ}-25^{\circ}=50^{\circ}$.
Hence, $x=155^{\circ}, y=50^{\circ}$.
2. $\angle E G B=\angle F E D \quad$ [Corresponding Angles]
$\therefore y+20^{\circ}=58^{\circ}$
$\Rightarrow y=58^{\circ}-20^{\circ} \Rightarrow y=38^{\circ}$
Again, $y+x=\angle F E O$
[Exterior angle of $\triangle E O G$]
$\therefore 38^{\circ}+x=58^{\circ}+22^{\circ}$
$\Rightarrow x=80^{\circ}-38^{\circ} \Rightarrow x=42^{\circ}$
Hence, $x=42^{\circ}, y=38^{\circ}$
3. $\angle D E C=55^{\circ}$ and $\angle A C B=b$
$\Rightarrow b=55^{\circ} \quad$ [Corresponding Angles]
In $\triangle A B C, \angle B=180^{\circ}-\left(60^{\circ}+b^{\circ}\right)$
[Angle sum property of a triangle]
$\angle B=180^{\circ}-\left(60^{\circ}+55^{\circ}\right)$
$\angle B=180^{\circ}-115^{\circ}=65^{\circ}$
$\therefore a=\angle B=65^{\circ} \quad$ [Corresponding Angles]
4. In $\triangle A B C, \angle B A C=180^{\circ}-\left(50^{\circ}+30^{\circ}\right)=100^{\circ}$
[Angle sum property of a triangle]
In $\triangle B A D, \angle B A D=180^{\circ}-\left(90^{\circ}+50^{\circ}\right)=40^{\circ}$
and $\angle B A E=\frac{1}{2} \angle B A C=\frac{100^{\circ}}{2}=50^{\circ}$
Now, $\angle D A E=x=\angle B A E-\angle B A D$
$\Rightarrow x=50^{\circ}-40^{\circ}=10^{\circ}$
Hence, $x=10^{\circ}$
5. In $\triangle T Q R$, we have
$\angle T Q R+\angle Q R T+\angle R T Q=180^{\circ}$
[Angle sum property of Δ]
$\Rightarrow 40^{\circ}+90^{\circ}+x=180^{\circ}$
$\Rightarrow 130^{\circ}+x=180^{\circ} \Rightarrow x=50^{\circ}$
6. $A B \| E F, \angle A B C=70^{\circ}, \angle E F D=40^{\circ}$

Since $\angle A B C=\angle C E F$ [Alternate interior angles]
$\Rightarrow \angle C E F=70^{\circ}$
Also from $\triangle D E F$
$x=\angle E+\angle F$ [Exterior angle property of a Δ]
$\Rightarrow x=70^{\circ}+40^{\circ}=110^{\circ}$
7. $\because \angle P O R$ and $\angle Q O R$ form a linear pair
$\therefore \quad \angle P O R+\angle Q O R=180^{\circ}$
or $a+b=180^{\circ}$
But $a-b=80^{\circ}$
...(2) [Given]
Adding eq. (1) and (2), we get

$$
2 a=260^{\circ} \quad \therefore \quad \frac{260^{\circ}}{2}=130^{\circ}
$$

Substituting the value of a in (1), we get $130^{\circ}+b=180^{\circ}$
$\Rightarrow b=180^{\circ}-130^{\circ}=50^{\circ}$
$\therefore a=130^{\circ}, b=50^{\circ}$
8. Draw $P C Q$ parallel to $A B$ and $D E$.
$a+100^{\circ}=180^{\circ}$
[Co-interior angles]
$\Rightarrow a=80^{\circ}$
Now, $\angle b+120^{\circ}=180^{\circ} \quad$ [Co-interior Angles] $\Rightarrow b=60^{\circ}$

Since, $P C Q$ is a straight line
$\Rightarrow \angle a+\angle B C D+\angle b=180^{\circ}$
$\Rightarrow 80^{\circ}+\angle B C D+60^{\circ}=180^{\circ}$
$\Rightarrow \angle B C D=40^{\circ}$.
9. Here $x=\angle E D C=70^{\circ}$
[Corresponding angles as $A B \| D C$]
and $\angle C B A=90^{\circ}$
Now, $\angle A D B=x=70^{\circ} \quad[A D=D B]$
In $\triangle A B D, \angle A B D=180^{\circ}-x-x$

$$
=180^{\circ}-70^{\circ}-70^{\circ}=40^{\circ}
$$

And $\angle B D C=\angle A B D=40^{\circ} \quad$ [Alternate angles] $\Rightarrow y=40^{\circ}$
Since, $A B \| D C$
$\Rightarrow z+\angle C B A=180^{\circ} \quad$ [Co-interior angles]
$\Rightarrow z=180^{\circ}-90^{\circ}=90^{\circ} \Rightarrow z=90^{\circ}$.
10. $P F \| Q E \Rightarrow x=70^{\circ}$ [Corresponding angles]

Also $\angle A P S=\angle B P Q=100^{\circ}$
[Vertically opposite angles]
As $A B \| C D$
$\Rightarrow \angle B P Q+\angle P Q D=180^{\circ}$ [Co-interior angles]
$\Rightarrow 100^{\circ}+70^{\circ}+y=180^{\circ}$
$\Rightarrow y=180^{\circ}-170^{\circ}=10^{\circ}$
$\therefore x=70^{\circ}$ and $y=10^{\circ}$

Short Answer Type

1. $\angle B A C=\left(180^{\circ}-108^{\circ}\right)=72^{\circ}$

Divide 72 in the ratio $1: 3$ we get 18 and 54 .
$\therefore \angle B A D=18^{\circ}$ and $\angle D A C=54^{\circ}$
Also, $A D=D B \Rightarrow \angle D B A=\angle B A D=18^{\circ}$, etc.
Now, in $\triangle A B C$
$\angle C B A+\angle B C A=\angle E A C \Rightarrow 18+x=108^{\circ}$
$\Rightarrow x=90^{\circ}$
2. $y+55^{\circ}=180^{\circ}$
[Co-interior Angles]
$\Rightarrow y=180^{\circ}-55^{\circ}=125^{\circ}$
Again $x=y$
[$A B|\mid C D$, Corresponding Angles]
Therefore $x=125^{\circ}$
Now, since $A B \| C D$ and $C D \| E F$, therefore, $A B \| E F$.
So, $\angle E A B+F E A=180^{\circ}$ [Co-interior Angle]
Therefore, $90^{\circ}+z+55^{\circ}=180^{\circ}$
$\Rightarrow z=35^{\circ}$.
3. $\angle 1=90^{\circ} \quad$ [Co-interior Angles, $P Q \| R S$]
$\angle 3=36^{\circ} \quad$ [Vertically Opposite Angles]
$\angle 2+\angle 3=90^{\circ}$
[$\angle 1, \angle 2$ and $\angle 3$ from a linear pair]
$\Rightarrow \angle 2=90^{\circ}-36^{\circ} \Rightarrow \angle 2=54^{\circ}$ $\angle 7=90^{\circ}$
[Linear Pair]

$$
\angle 4+\angle 7=\angle 1+36^{\circ}
$$

[Alternate Interior Angles]
$\Rightarrow \angle 4=36^{\circ}$ $\angle 5=180^{\circ}-36^{\circ}$
[Linear Pair]
$\Rightarrow \angle 5=144^{\circ}$ $\angle 6=\angle 4=36^{\circ}$ [Vertically Opposite
Angles]
Hence, $\angle 1=90^{\circ}=\angle 7, \angle 2=54^{\circ}$, $\angle 3=\angle 4=\angle 6=36^{\circ}, \angle 5=144^{\circ}$.
4 . Since, $A B \| D C$
$\therefore \quad a=x \quad \ldots$ (1) [Alternate interior angles]
and $b=y \quad \ldots$ (2) \quad [Alternate interior angles]
Adding (1) and (2), we get

$$
\begin{equation*}
a+b=x+y \tag{i}
\end{equation*}
$$

5. $\angle C D E=\angle B A C=65^{\circ}$
[Alternate Interior Angles]

$$
y=180^{\circ}-125^{\circ}
$$

[Linear Pair]
$\therefore y=55^{\circ}$ $\angle A C B=y=55^{\circ} \quad$ [Corresponding Angles]
In $\triangle A C B$, we have

$$
\angle B+\angle A+\angle A C B=180^{\circ}
$$

[Angle sum property of a triangle]
$\therefore \angle B=180^{\circ}-\left(65^{\circ}+55^{\circ}\right)$
$\therefore \angle B=60^{\circ}$
and $x=\angle A B C=60^{\circ}$ [Corresponding Angles]
Hence, $x=60^{\circ}, y=55^{\circ}$.
6. $P Q R S T$ is a regular pentagon
$\therefore \angle P=\angle Q=\angle R=\angle S=\angle T=\frac{540^{\circ}}{5}=108^{\circ}$. .(i)
$P L$ is the bisector of $\angle T P Q$
$\therefore \angle Q P L=\frac{1}{2} \times 108^{\circ}=54^{\circ}$
In quadrilateral $P Q R L$,
$\angle Q P L+\angle P Q R+\angle Q R L+\angle R L P=360^{\circ}$
[Angle sum property of a quadrilateral]
$\Rightarrow 54^{\circ}+108^{\circ}+108^{\circ}+\angle R L P=360^{\circ}$
$\Rightarrow \angle R L P=360^{\circ}-270^{\circ}=90^{\circ}$
In $\triangle L M R, \angle M R L+\angle R L M+\angle R M L=180^{\circ}$
[Angle sum property of a triangle]
$\Rightarrow 54^{\circ}+90^{\circ}+\angle R M L=180^{\circ}$
[$M R$ is the bisector of $\angle S R Q$]
$\Rightarrow \angle R M L=180^{\circ}-144^{\circ}=36^{\circ}$.
7. $A B\|D E ; D E\| F G ; C D \| E F$
$\angle 2=55^{\circ}, \angle 4=60^{\circ}$
Now, $E F \| C D$
$\Rightarrow \angle 4=\angle 3 \quad$ [Alternate Interior Angles]
$\Rightarrow \angle 3=60^{\circ}$
and $D E \| F G$
$\Rightarrow \angle 1+\angle 4=180^{\circ} \quad$ [Co-interior Angles]
$\Rightarrow \angle 1=180^{\circ}-60^{\circ}=120^{\circ}$
$\Rightarrow \angle 1=120^{\circ}, \angle 3=60^{\circ}$.
8. Given : Ray $O E$ bisects $\angle A O C$,
i.e., $\angle 1=\angle 2$,

Ray $O F$ bisects $\angle C O B$.
i.e., $\angle 3=\angle 4$.

Also $O E \perp O F$
To Prove : Points A, O and B are collinear.
Proof : $O E \perp O F$
$\Rightarrow \angle E O F=90^{\circ} \Rightarrow \angle 2+\angle 3=90^{\circ}$
Multiplying both sides by 2
$\Rightarrow 2 \angle 2+2 \angle 3=180^{\circ}$
$\Rightarrow(\angle 2+\angle 2)+(\angle 3+\angle 3)=180^{\circ}$
$\Rightarrow(\angle 1+\angle 2)+(\angle 3+\angle 4)=180^{\circ}$

$$
[\angle 2=\angle 1, \angle 4=\angle 3]
$$

$\Rightarrow \angle A O C+\angle B O C=180^{\circ}$
By the converse of Linear Pair Axiom
Ray $O A$ and Ray $O B$ are opposite rays.
$\Rightarrow A O B$ is a line.
Hence, the points A, O and B are collinear.
9. Through C, draw $C P$ parallel to $A B$ and $D E$.

Now $\angle A B C+\angle 1=180^{\circ}$
[Co-interior angles]
Also, $\angle 2=\angle C D E$
[Alternate interior angles]
Adding (1) and (2), we get
$\therefore \quad \angle A B C+\angle 1+\angle 2=180^{\circ}+\angle C D E$
$\Rightarrow \angle A B C+\angle B C D=180^{\circ}+\angle C D E$

$$
[\because \angle 1+\angle 2=\angle B C D]
$$

Hence proved.
10. From E, draw $E F\|A B\| C D$.

Now, $E F \| C D$ and $C E$ is the transversal.
$\therefore \angle D C E+\angle C E F=180^{\circ}$ [Co-interior angles]
$\Rightarrow x+\angle C E F=180^{\circ}$
$\Rightarrow \angle C E F=\left(180^{\circ}-x\right)$
Again, $E F \| A B$ and $A E$ is the transversal.
$\therefore \quad \angle B A E+\angle A E F=180^{\circ}$ [Co-interior angles]
$\Rightarrow 105^{\circ}+25^{\circ}+\left(180^{\circ}-x\right)=180^{\circ} \Rightarrow x=130^{\circ}$.
Hence, $x=130^{\circ}$.

Long Answer Type

1. In $\triangle P Q R, \angle Q=60^{\circ}, \angle R=45^{\circ}$
$\therefore \angle Q P R=180^{\circ}-(\angle Q+\angle R)$
$=180^{\circ}-\left(60^{\circ}+45^{\circ}\right)$
$=180^{\circ}-105^{\circ}=75^{\circ}$
As $P S$ is angle bisector of $\angle Q P R$
$\therefore \angle Q P S=\frac{\angle Q P R}{2}=\frac{75^{\circ}}{2}=37.5^{\circ}$
Also, $\triangle P T Q$ is a right angled triangle.
So, $\angle Q P T=180^{\circ}-\left(90^{\circ}+60^{\circ}\right)$

$$
=180^{\circ}-150^{\circ}=30^{\circ}
$$

$\therefore \quad \angle T P S=\angle Q P S-\angle Q P T$

$$
\begin{equation*}
=37.5^{\circ}-30^{\circ}=7.5^{\circ} . \tag{1}
\end{equation*}
$$

2. Here, we have $2 b-a=65^{\circ}$

So, $a+90^{\circ}+2 a+b+15^{\circ}+2 b=360^{\circ}$
[Complete angle]
or, $3 a+3 b+105^{\circ}=360^{\circ}$
or, $3 a+3 b=360^{\circ}-105^{\circ}$
or, $3 a+3 b=255^{\circ}$
or, $a+b=85^{\circ}$
Adding (1) and (2), we get

$$
\begin{equation*}
3 b=150^{\circ} \Rightarrow b=50^{\circ} \tag{2}
\end{equation*}
$$

From (1), we have
$100^{\circ}-a=65^{\circ} \Rightarrow a=100^{\circ}-65^{\circ}=35^{\circ}$
So, $\angle A O B=a=35^{\circ}$
$\angle A O D=2 b=2 \times 50^{\circ}=100^{\circ}$
and $\angle C O D=2 a+b+15^{\circ}$
$=2 \times 35^{\circ}+50^{\circ}+15^{\circ}$
$=70^{\circ}+50^{\circ}+15^{\circ}=135^{\circ}$.
3. Given : $\triangle A B C$ with $\angle A B C=90^{\circ}$
and $B D \perp A C$.
To Prove : $\angle A B D=\angle A C B$
Proof : In $\triangle A B C$,

$$
\angle A+\angle A B C+\angle C=180^{\circ}
$$

[Angle sum property of a triangle]

$\Rightarrow \angle A+\angle C=90^{\circ} \quad \ldots .(1)\left[\because \angle A B C=90^{\circ}\right]$
Also, in $\triangle A B D, B D \perp A D$
So, $\angle A D B=90^{\circ}$
and $\angle A+\angle A B D+\angle A D B=180^{\circ}$
[Angle sum property of a triangle]
$\Rightarrow \angle A+\angle A B D=90^{\circ} \ldots(2)\left[\because \angle A D B=90^{\circ}\right]$
From (1) and (2), we get
$\angle A+\angle C=\angle A+\angle A B D$
$\Rightarrow \angle A C B=\angle A B D$.
4. In $\triangle A B C, \angle A+x+y=180^{\circ}$
[Angle sum property of a triangle]
Also, $62^{\circ}+y=\angle D B C$
[Exterior angle property of a triangle]
$\Rightarrow \frac{1}{2}\left(62^{\circ}+y\right)=\frac{1}{2} \angle D B C$
$\Rightarrow 31^{\circ}+\frac{y}{2}=\angle P B C$
Similarly, $31^{\circ}+\frac{x}{2}=\angle P C B$
In $\triangle P B C, \angle B P C+\angle P B C+\angle P C B=180^{\circ}$
[Angle sum property of a triangle]
$\Rightarrow \quad \angle B P C+31^{\circ}+\frac{y}{2}+31^{\circ}+\frac{x}{2}=180^{\circ}$
[Using (2) and (3)]
$\Rightarrow \angle B P C+62^{\circ}+\frac{x}{2}+\frac{y}{2}=180^{\circ}$
$\Rightarrow \angle B P C+62^{\circ}+\left(\frac{180^{\circ}-62^{\circ}}{2}\right)=180^{\circ}$
[using angle sum property of $\triangle A B C$] $\angle B P C=180^{\circ}-62^{\circ}-90^{\circ}+31^{\circ}=90^{\circ}-31^{\circ}=59^{\circ}$
$\therefore \angle B P C=59^{\circ}$
5. $\angle 6+62^{\circ}=180^{\circ}$
[Linear Pair]
$\therefore \angle 6=180^{\circ}-62^{\circ} \Rightarrow \angle 6=118^{\circ}$
$\angle 6+\angle 5=180^{\circ} \quad$ [Co-interior Angles]
$\Rightarrow \angle 5=180^{\circ}-118^{\circ}=62^{\circ}$ $\angle 1=28^{\circ} \quad$ [Alternate Interior Angle] $\angle 4+28^{\circ}=\angle 1+\angle 6$
[Alternate angles as $A D \| B C$]
$\Rightarrow \angle 4+28^{\circ}=28^{\circ}+118^{\circ}$
$\therefore \angle 4=118^{\circ}$

$$
\angle 3+\angle 4=180^{\circ}
$$

[Linear Pair]
$\Rightarrow \angle 3=180^{\circ}-118^{\circ}=62^{\circ}$ $\angle 2+28^{\circ}=180^{\circ}$
[Linear Pair]
$\Rightarrow \angle 2=180^{\circ}-28^{\circ}$
$\Rightarrow \angle 2=152^{\circ}$
Hence, $\angle 1=28^{\circ}, \angle 2=152^{\circ}, \angle 3=62^{\circ}$, $\angle 4=118^{\circ}, \angle 5=62^{\circ}, \angle 6=118^{\circ}$.

Integer Answer Type

1. (2): Construction: Through E draw a line $G E H\|A B\| C D$.

Now, $G E \| A B$ and $E A$ is a transversal.
$\therefore \angle G E A=\angle E A B=50^{\circ}$
[Alternate interior angles]
Again, $E H \| C D$ and $E C$ is a transversal.
$\therefore \quad \angle H E C+\angle E C D=180^{\circ}$ [Co-interior angles]
$\Rightarrow \angle H E C+100^{\circ}=180^{\circ} \Rightarrow \angle H E C=80^{\circ}$
Now, GEH is a straight line.
$\therefore \angle G E A+\angle A E C+\angle H E C=180^{\circ}$
$\Rightarrow 50^{\circ}+x+80^{\circ}=180^{\circ}$
$\Rightarrow x=50^{\circ}$.

So, $\frac{x}{25^{\circ}}=\frac{50^{\circ}}{25^{\circ}}=2$.
2. (5) : $x=180^{\circ}-x \Rightarrow x=90^{\circ}$
$\therefore \quad \frac{x-60^{\circ}}{6^{\circ}}=\frac{90^{\circ}-60^{\circ}}{6^{\circ}}=5$
3. (3) : Let angles be $x, 2 x$ and $3 x$.

So, $x+2 x+3 x=180^{\circ}$
[Angle sum property of triangle]
$\Rightarrow x=30^{\circ}$
Smallest angle $=30^{\circ}$; Greatest angle $=90^{\circ}$
So, the greatest angle is 3 times to the smallest angle.
4. (3) : Let angles be x and $4 x$.
$x+4 x=180^{\circ} \Rightarrow 5 x=180^{\circ} \Rightarrow x=36^{\circ}$.
Angles are 36° and 144°
$\therefore \frac{\text { Difference of angles }}{\text { Smaller angle }}=\frac{144^{\circ}-36^{\circ}}{36^{\circ}}=3$.
5. (9): $a+30^{\circ}+285^{\circ}=360^{\circ} \quad$ [Complete angle]
$\Rightarrow a=45^{\circ}$
$\Rightarrow \frac{a}{5^{\circ}}=\frac{45^{\circ}}{5^{\circ}}=9$
6. (5) : $b=180^{\circ}-\left(30^{\circ}+a\right) \quad[$ As $l \| m$, co-interior angles]
$=180^{\circ}-\left(30^{\circ}+45^{\circ}\right)$
$\Rightarrow b=105^{\circ}$
$\Rightarrow \frac{b}{21^{\circ}}=\frac{105^{\circ}}{21^{\circ}}=5$
7. (9): Since a and c are alternate interior angles $c=45^{\circ}$.
[As $p \| q$]
\therefore Sum of digits $=4+5=9$
8. (3) : $c+b+d=180^{\circ}$
[Linear pair]
$\Rightarrow 45^{\circ}+105^{\circ}+d=180^{\circ}$
$\Rightarrow d=30^{\circ}$
\therefore Sum of digits of $d=3+0=3$.
9. (5): c and e are vertically opposite angles.
$\therefore e=45^{\circ}$.
So, $\frac{e+5^{\circ}}{10^{\circ}}=\frac{50^{\circ}}{10^{\circ}}=5$
10. (4) : b and f are vertically opposite angles.
$\therefore f=105^{\circ}$
So, $\frac{f-5^{\circ}}{25^{\circ}}=\frac{100^{\circ}}{25^{\circ}}=4$.

